Climatic influences on the worldwide spread of SARS-CoV-2

Michail Bariotakis¹, George Sourvinos², Elias Castanas³, Stergios A. Pirintsos^{4*}

¹Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany

²Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion, Crete, Greece

³Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece

⁴Department of Biology, University of Crete, Heraklion, Greece

*Corresponding author – pirintsos@uoc.gr

Supplementary Material

eMethods - The maximum-entropy approach

- eTable 1 Bioclimatic variables
- eFigure 1 Sensitivity of model predictions

Supplementary Material

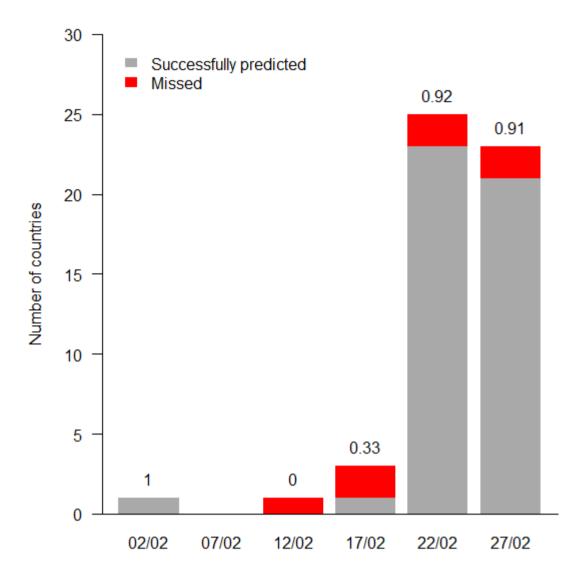
eMethods

The maximum-entropy approach

In total, we used data from seven WHO Coronavirus Disease -2019 Reports (Situation Report -8, -13, -18, -23, -28, -33, -39, and -44), which spanned the period from 02/02/2020 to 04/03/2020 on a regular interval of five days. The countries with at least one confirmed incident in each Situation Report or any of the previous ones were used as "presence records" of the virus.

We also employed the widely used bioclimatic data from WorldClim.org¹ in 10 minutes (corresponding to approximately 18.5 km) resolution for the whole world map. WorldClim is a set of global climate layers (gridded climate data), which can be used for mapping and spatial modeling. These data represent variables derived from climatic data, which are considered to have an important effect on biological entities (see Table S1).

To correlate the virus presence records given by WHO with the bioclimatic variables, we applied a machine-learning technique called maximum entropy modeling, employing Maxent² version 3.4.1. Maxent was initially designed to model the potential niche of species, given a set of presence records and a set of environmental predictors. The model expresses a probability distribution where each grid cell has a predicted suitability of conditions for the species, with the underlying assumption that the species relates to the employed variables, in our case to the bioclimatic variables.


Analysis was performed in R version $3.6.0^3$, which was also used for the creation of the Figures and Maps.

References

- 1. Fick SE, Hijmans RJ. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 2017; 37: 4302–4315. https://doi.org/10.1002/joc.5086
- 2. Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an opensource release of Maxent. Ecography 2017; 40: 887-893. doi:10.1111/ecog.03049
- 3. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

eTable 1. Bioclimatic variables

Variable	Description	Temporal Scale
BIO1	Annual Mean Temperature	Annual
BIO2	Mean Diurnal Range (Mean of monthly (max temp - min temp))	Variation
BIO3	Isothermality (BIO2/BIO7) (* 100)	Variation
BIO4	Temperature Seasonality (standard deviation *100)	Variation
BIO5	Max Temperature of Warmest Month	Month
BIO6	Min Temperature of Coldest Month	Month
BIO7	Temperature Annual Range (BIO5-BIO6)	Annual
BIO8	Mean Temperature of Wettest Quarter	Quarter
BIO9	Mean Temperature of Driest Quarter	Quarter
BIO10	Mean Temperature of Warmest Quarter	Quarter
BIO11	Mean Temperature of Coldest Quarter	Quarter
BIO12	Annual Precipitation	Annual
BIO13	Precipitation of Wettest Month	Month
BIO14	Precipitation of Driest Month	Month
BIO15	Precipitation Seasonality (Coefficient of Variation)	Variation
BIO16	Precipitation of Wettest Quarter	Quarter
BIO17	Precipitation of Driest Quarter	Quarter
BIO18	Precipitation of Warmest Quarter	Quarter
BIO19	Precipitation of Coldest Quarter	Quarter

eFigure 1. Sensitivity of model predictions. Each bar represents the count of new infected countries of the report coming after each model.