Supplementary Materials:

Data Sources:

Table S1. Summarizes the sources of data used in this study.

Data	Source	Date of latest available data
Aviation: T-100 Domestic Market (All Carriers)	Bureau of Transportation Statistics (1)	August 2019
State Population	United States Census Bureau (2)	2019 (projected from data collected in 2010)
State Demographic Composition	United States Census Bureau (3)	2018
State-wise Uninsured Population	United States Census Bureau (4)	2018
State-wise Liquid Asset Poverty Rate	Prosperity Now Scorecard (5)	2016
Confirmed Existing COVID-19 Cases in the US	An interactive web-based dashboard to track COVID-19 in real time (6)	2020
American Travel Survey	Bureau of Transportation Statistics (7)	1995

 Table S1. Data sources

Derivation of P-matrix and Total Passenger Flux:

The matrix of passenger fluxes (**P**) was derived in the same manner as Brockmann and Helbing (8). Aviation data was first gathered from the United States Bureau of Transportation Statistics (1). This data included the number of passengers, origin, destination, and flight month. This information was sorted by month and arranged into an $n \times m$ matrix containing the total number of passengers traveling from state n to state m (where in this case n=m=52). The values stored within **P** were then normalized by the total passenger flux to m (F_{nm}), such that the value of **P** gives the probability that a passenger arriving to state m originated in state n. The daily total passenger flux ϕ of the air traffic network for each month is then calculated by taking the sum of F_{nm} and dividing by the number of days in the month. All sources for data used to determine **P** can be found in Table S1.

Groud Based Traffic Volume

The 1995 American Travel Survey (ATS) is the most recent available data regarding the movement of passengers from state to state via ground transportation. The ATS was conducted to gather information on household trips of over 100 miles. This data was used to estimate interstate passenger flux via ground transportation. When this data is compared with air traffic, it was found that the daily passenger flux of the ground traffic was less than 1% of the total passenger flux of air traffic.

Domestic Traffic Volume:

Figure 1 in the maintext shows the population-weighted interstate air traffic for each state. The traffic between states was calculated as a first order function of the total flux of passengers from state n to state m, and the total population of state m using the equation

population-weighted traffic
$$\propto \left[\frac{\left(1-F_{ij}\right)^{\kappa}}{\sum_{i=1}^{M}\left(1-F_{ij}\right)^{\kappa}F_{ij}}\right]\left[\frac{\left(1-Q_{j}\right)^{\kappa}}{\sum_{j=1}^{M}\left(1-Q_{j}\right)^{\kappa}Q_{j}}\right]$$

Where F_{ij} is the passenger flux from state i to state j (as described above), Q_j is the fraction of total population residing in state j, and κ is the order of the multiplier (equal to one for this case).

High traffic (white lines in Figure 1) indicates a large number of people traveling from state i to state j, relative to the total population of state j. The traffic is then normalized by its maximum value, and shown in Figure 1.

Initial Conditions for the SEIR Model

This section outlines the tabulated active cases of COVID-19 in the US, as confirmed on March 2, 5, 9, 11, 12, 13, 14, 15, 16. These datasets served as the initial conditions for the SEIR model.

Table S2. Confirmed active cases of COVID-19 in the US

March 2, 2020

,					
State	Active cases	State	Active cases	State	Active cases
CA	13	NY	1	ТХ	1
FL	2	OR	2	WA	10
IL	1	RI	2	WI	1

March 5, 2020

State	Active	State	Active	State	Active	State	Active	State	Active
WA	65	NV	1	IL	- Cases	FL	<u> </u>	RI	2
OR	3	AZ	1	TN	1	NC	1	MA	1
CA	42	TX	2	GA	2	NY	25	NH	2

March 9, 2020

State	State Active	State	Active	State	Active	State	Active	State	Active
State	cases	State	cases	State	cases	State	cases	State	cases
AZ	4	HI	2	MA	22	NJ	5	SC	6
CA	122	IA	3	MD	5	NV	4	TN	3
CO	8	IL	5	MN	2	NY	140	TX	14
СТ	1	IN	3	MO	1	OK	1	UT	1
DC	2	KS	1	NC	2	OR	14	VA	2
FL	12	KY	4	NE	3	PA	7	VT	1
GA	10	LA	1	NH	5	RI	3	WA	108

March 11, 2020

State	Active								
State	cases								
AR	1	IL	17	NC	7	PA	15	WI	2
AZ	8	IN	10	NE	6	RI	5		
CA	190	KS	1	NH	5	SC	9		
CO	27	KY	8	NJ	22	SD	4		
СТ	2	LA	6	NV	4	TN	7		
DC	4	MA	91	NW	3	TX	13		
FL	26	MD	9	NY	212	UT	2		
GA	23	MI	2	OH	4	VA	9		
HI	2	MN	5	OK	2	VT	1		
IA	13	MO	1	OR	15	WA	266		

State	Active	State	Active	Stata	State Active State	Active	State	Active	
State	cases	State	cases	State	cases	State	cases	State	cases
AR	1	IA	14	MO	1	NY	216	UT	3
AZ	8	IL	23	MS	1	OH	5	VA	10
CA	194	IN	11	MT	1	OK	2	VT	2
СО	34	KS	1	NC	9	OR	21	WA	342
СТ	3	KY	8	ND	1	PA	16	WI	5
DC	10	LA	13	NE	10	RI	5	WY	1
DE	1	MA	94	NH	5	SC	10		
FL	27	MD	12	NJ	22	SD	7		
GA	31	MI	2	NV	7	TN	9		
HI	2	MN	5	NW	4	TX	22		

March 12, 2020

March 13, 2020

Stata	Active	State	Active	State	Active	State	Active	State	Active
State	cases	State	cases	State	cases	ases	cases	State	cases
AK	1	HI	2	MI	12	NV	11	TN	18
AR	6	IA	16	MN	9	NW	6	TX	34
AZ	8	IL	30	MO	2	NY	421	UT	5
CA	262	IN	13	MS	1	OH	5	VA	30
CO	72	KS	4	MT	1	OK	3	VT	2
СТ	5	KY	11	NC	17	OR	30	WA	425
DC	10	LA	44	ND	1	PA	22	WI	7
DE	4	MA	107	NE	11	RI	5	WY	1
FL	48	MD	12	NH	6	SC	12		
GA	41	ME	3	NJ	49	SD	7		

March 14, 2020

State	Active								
State	cases								
AL	6	HI	4	ME	3	NJ	49	SC	13
AR	9	IA	17	MI	25	NM	10	SD	8
AZ	11	ID	1	MN	21	NV	20	TN	30
CA	312	IL	45	MO	4	NY	523	ТХ	50
CO	77	IN	16	MS	6	OH	26	UT	10
СТ	12	KS	6	MT	5	OK	4	VA	31
DC	10	KY	14	NC	24	OR	32	VT	3
DE	6	LA	67	ND	1	PA	47	WA	531
FL	73	MA	122	NE	14	PR	3	WI	18
GA	65	MD	28	NH	7	RI	20	WY	2

March 15, 2020

State	Active cases								
AK	1	HI	6	MI	33	NV	21	ТХ	63
AL	12	IA	18	MN	35	NY	726	UT	24
AR	16	ID	5	MO	5	OH	30	VA	44
AZ	11	IL	64	MS	6	OK	4	VT	5

State	Active								
State	cases								
CA	363	IN	20	MT	7	OR	35	WA	601
СО	100	KS	7	NC	32	PA	47	WI	27
СТ	24	KY	18	ND	1	PR	3	WV	0
DC	16	LA	89	NE	17	RI	20	WY	3
DE	6	MA	137	NH	7	SC	19		
FL	111	MD	31	NJ	72	SD	8		
GA	98	ME	6	NM	13	TN	32		

March 15, 2020

State	Active								
State	cases								
AK	1	HI	7	MI	53	NV	44	TX	82
AL	28	IA	22	MN	54	NY	956	UT	28
AR	22	ID	5	MO	6	OH	50	VA	51
AZ	17	IL	91	MS	12	OK	10	VT	12
CA	474	IN	25	MT	7	OR	38	WA	726
CO	134	KS	10	NC	37	PA	77	WI	46
СТ	30	KY	19	ND	1	PR	5	WV	0
DC	17	LA	112	NE	18	RI	21	WY	3
DE	8	MA	163	NH	13	SC	27		
FL	150	MD	38	NJ	173	SD	9		
GA	120	ME	17	NM	17	TN	39		

State-wise Statistics:

Table S3. State-wise population, percent of uninsured population, liquid asset poverty rate, and estimated local epidemic peak arrival date

State	Population	Percent of Uninsured Population (%)	Liquid Asset Poverty Rate (%)	Local Epidemic Peak arrival date
AL	4903185	10	42.1	6/24/20
AK	731545	12.6	not available	6/3/20
AZ	7278717	10.6	39.6	6/15/20
AR	3017804	8.2	50.7	6/24/20
CA	39512223	7.2	33.9	6/8/20
CO	5758736	7.5	23.5	6/18/20
СТ	3565287	5.3	32.2	6/25/20
DE	973764	5.7	not available	6/20/20
FL	21477737	13	47.5	6/18/20
GA	10617423	13.7	48	6/18/20
HI	1415872	4.1	not available	6/12/20
ID	1787065	11.1	36.6	6/11/20
IL	12671821	7	33.5	6/16/20
IN	6732219	8.3	37.5	6/21/20
IA	3155070	4.7	27.4	6/24/20
KS	2913314	8.8	38.2	6/21/20
KY	4467673	5.6	38.7	6/24/20
LA	4648794	8	50.6	6/21/20

C4a4a	Donulation	Percent of Uninsured	Liquid Asset Poverty	Local Epidemic
State	Population	Population (%)	Rate (%)	Peak arrival date
ME	1344212	8	16	6/23/20
MD	6045680	6	22.3	6/21/20
MA	6892503	2.8	39.4	6/17/20
MI	9986857	5.4	42.4	6/20/20
MN	5639632	4.4	20.6	6/19/20
MS	2976149	12.1	54.6	6/25/20
MO	6137428	9.4	37.6	6/21/20
MT	1068778	8.2	not available	6/14/20
NE	1934408	8.3	21.1	6/21/20
NV	3080156	11.2	47.6	6/13/20
NH	1359711	5.7	not available	6/8/20
NJ	8882190	7.4	26.8	6/20/20
NM	2096829	9.5	46	6/19/20
NY	19453561	5.4	32.1	6/8/20
NC	10488084	10.7	42	6/19/20
ND	762062	7.3	not available	6/25/20
OH	11689100	6.5	34.9	6/22/20
OK	3956971	14.2	42.5	6/23/20
OR	4217737	7.1	37.6	6/8/20
PA	12801989	5.5	31.7	6/21/20
RI	1059361	4.1	not available	6/6/20
SC	5148714	10.5	42.4	6/23/20
SD	884659	9.8	not available	6/24/20
TN	6829174	10.1	46.3	6/18/20
TX	28995881	17.7	42.2	6/18/20
UT	3205958	9.4	31.1	6/16/20
VT	623989	4	not available	6/20/20
VA	8535519	8.8	30.6	6/23/20
WA	7614893	6.4	26.7	5/27/20
WV	1792147	6.4	47.6	6/25/20
WI	5822434	5.5	33.7	6/22/20
WY	578759	10.5	not available	6/25/20
DC	705749	3.2	not available	6/20/20
PR	3193694	not available	not available	6/22/20

Table S4. State-wise demographic composition

State	Population aged under 69 (%)	Population aged between 70 and 79 (%)	Population aged 80 and above(%)
AL	88.62296	7.524339	3.8527
AK	92.95765	5.067545	1.97481
AZ	87.88952	8.030611	4.079872
AR	88.41121	7.587833	4.000962
CA	90.35337	6.090015	3.556618
CO	90.86742	6.089441	3.04314
СТ	88.10969	7.295282	4.595029
DE	87.43014	8.425087	4.144769
FL	85.51038	9.198451	5.291168

State	Population aged	Population aged between 70 and 79 years (%)	Population aged 80 years
GA	90.87946	6.21878	2.901761
HI	87.43568	7.661858	4.90246
ID	89 52593	7.060964	3 413107
IL.	89.45625	6.601481	3.942264
IN	89.47237	6 73905	3 788578
IA	88 36755	6 997999	4 634451
KS	89 28461	6 560387	4 154999
KY	89.13332	7.184783	3.681898
LA	89.79506	6.688765	3,516175
ME	86.23196	8.907998	4.860042
MD	89.67587	6.636484	3.687645
MA	88.81725	6.953139	4.22961
MI	88.54884	7.351483	4.099675
MN	89.39046	6.57352	4.036015
MS	89.38353	6.984092	3.632376
МО	88.55039	7.280364	4.169248
MT	87.74552	8.052207	4.202277
NE	89.40769	6.448508	4.1438
NV	88.12391	8.754637	3.121449
NH	88.00066	7.782696	4.216644
NJ	88.92509	6.867774	4.207141
NM	88.33098	7.688501	3.980523
NY	88.76038	6.916455	4.32317
NC	89.12478	7.233566	3.641659
ND	89.55895	6.039783	4.401265
OH	88.53654	7.230345	4.233119
OK	89.34523	6.902068	3.752702
OR	88.4167	7.701553	3.88175
PA	87.5246	7.653513	4.821887
RI	88.22215	7.151227	4.626625
SC	88.24506	8.080561	3.674377
SD	89.03988	6.637234	4.322884
TN	89.02842	7.32668	3.644899
TX	91.72226	5.460938	2.816805
UT	92.69322	4.820941	2.48584
VT	87.24715	8.345375	4.407479
VA	89.63804	6.826139	3.53582

State	Population aged under 69 years (%)	Population aged between 70 and 79 years (%)	Population aged 80 years and above(%)
WA	89.88078	6.704331	3.414888
WV	86.69987	8.722295	4.577834
WI	88.71103	7.079336	4.209635
WY	89.30448	7.05996	3.635564
DC	91.84019	5.059256	3.100554
PR	85.21589	9.372603	5.411509

Calculation of Age Weighed Mortality Rate:

Wu and McGoogan (9) reported the case fatality rate (CFR) of COVID-19 based upon the confirmed cases in China, as outlined in Table S5.

 Table S5. Case fatality rate of COVID-19 as a function of patients age

Patient group	Number of confirmed cases	Number of death	CFR (%)
All	44672	1023	2.3
Patients aged 70-79 years	3918	312	8.0
Patients aged ≥ 80 years	1408	208	14.8

Based on the reported statistics, the CFR for patients aged below (and including) 69 years can be calculated as: $CFR_{\leq 69} = (1023 - 312 - 208)/(44672 - 3918 - 1408) \approx 1.3\%$. Next the age weighted mortality rate for state *n* can be calculated per:

*Mortality rate*_n = $CFR_{\le 69}f_{\le 69,n} + CFR_{70-79}f_{70-79,n} + CFR_{\ge 80}f_{\ge 80,n}$,

Where $f_{\leq 69,n}$, $f_{70-79,n}$, and $f_{\geq 80,n}$ are respectively the percent of population aged under (including) 69 years, between 70 and 79 years, and above (including) 80 years for state *n*.

References:

- 1. Air Carrier Statistics. Bureau of Transportation Statistics. https://www.transtats.bts.gov/Tables.asp?DB_ID=111
- 2. United States Census Bureau. State Population. <u>https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html</u>
- 3. United States Census Bureau. State Demographic Composition. <u>https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk</u>
- 4. United State Census Bureau. Health Insuration Coverage in the United States: 2018 https://census.gov/library/publications/2019/demo/p60-267.html
- 5. Prosperity Now Scorecard <u>https://scorecard.prosperitynow.org/data-by-issue#finance/outcome/liquid-asset-poverty-rate</u>
- 6. E. Dong, H. Du, L. Gardner. The Lancet Infectious Diseases. (2020)
- 7. American Travel Survey. Bureau of Transportation Statistics. <u>https://www.bts.gov/browse-statistical-products-and-data/surveys/american-travel-survey</u>
- 8. D. Brockmann, D. Helbing, The hidden geometry of complex, network-driven contagion phenomena. *Science* **342**, 1337-1342 (2013).
- Z. Wu, J.M. McGoogan. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA*. (2020)