#### **Supplementary Materials**

## **Materials and Methods**

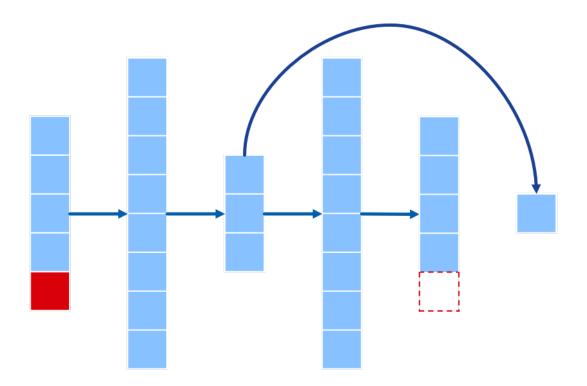
### **Data Sources**

Data on the confirmed, new and death cases of Covid-19 from January 20, 2020 to March 8 were from WHO (https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situationreports). Data included the total numbers of the accumulated, new confirmed and death cases in the world and across 102 countries. The data were organized in a matrix with the rows representing the whole world and countries and columns representing the number of the new confirmed cases of each day. The confirmed cases of each country were a time series. Let  $t_{ij}$  be the number of the confirmed cases of the  $j^{th}$  day within the  $i^{th}$  country. Let Z be a  $I \times m$ dimensional matrix. The element  $Z_{ij}$  is the number of the confirmed new cases of Covid-19 on the  $j^{th}$  day, starting with January 20, 2020 in the  $i^{th}$  country.

#### **Modified Auto-encoder for Modeling Time Series**

Modified auto-encoders (MSAE) (1,2) were used to forecast the number of the accumulative and new confirmed cases of Covid-19. Unlike the classical auto-encoder where the number of nodes in the layers usually decreases from the input layer to the latent layers, the numbers of the nodes in the input, the first latent layer, the second latent layer and output layers in the MSAE were 8, 32, 4 and 1, respectively (Figure 1). We view a segment of time series with 8 days as a sample of data and take 128 segments of time series as the training samples. One element from the dada matrix *Z* is randomly selected as a start day of the segment and select its 7 successive days as the other days to form a segment of time series. Let *i* be the index of the segment and  $j_i$  be the column index of the matrix *Z* that was selected as the starting day. The *i*<sup>th</sup> segment time series

can be represented as  $\{Z_{j_i}, Z_{j_i+1}, \dots, Z_{j_i+7}\}$ . Data were normalized to  $X_{j_i+k} = \frac{Z_{j_i+k}}{S}$ , k =


0, 1, ..., 7, where  $S = \frac{1}{8} \sum_{k=0}^{7} Z_{j_i+k}$ . Let  $Y_i = \frac{Z_{j_i+8}}{S}$  be the normalized number of cases to forecast. If S = 0, then set  $Y_i = 0$ . The loss function was defined as

$$L = \sum_{i=1}^{128} W_i (Y_i - \hat{Y}_i)^2 ,$$

where  $Y_i$  was the observed number of the cases in the forecasting day of the *i*<sup>th</sup> segment time series and  $\hat{Y}_i$  was its forecasted number of cases by the MSAE, and  $W_i$  were weights. If  $j_i$  was in the interval [1, 12], then  $W_i = 1$ . If  $j_i$  was in the interval [13, 24], then  $W_i = 2$ , etc. The back propagation algorithm was used to estimate the weights and bias in the MSAE. Repeat training processes 5 times. The average forecasting  $\hat{Y}_i$ , i = 1, ..., 34 will be taken as a final forecasted number of the accumulated confirmed cases for each province/city.

#### **Forecasting Procedures**

The trained MSAE was used for forecasting the future number of the confirmed cases of Covid-19 for each province/city. Consider the  $i^{th}$  province/city. Assume that the number of new confirmed cases of Covid-19 on the  $j^{th}$  day that needs to be forecasted is  $x_{ij}$ . Let H be a 34 × 8 dimensional matrix and  $h_{il} = x_{ij-9+l}$ , i = 1, ..., 34, and l = 1, ..., 8. Let  $g_i = \frac{1}{8}\sum_{l=1}^{8} h_{il}$ , i =1, ..., 34 be the average of the  $i^{th}$  row of the matrix H. Let U be the normalized matrix of Hwhere  $u_{il} = \frac{h_{il}}{g_i}$ , i = 1, ..., 34, and l = 1, ..., 8. The output of the MSAE is the forecasted number of the new confirmed cases and is denoted as  $\hat{v}_i = f(u_{i1}, ..., u_{i8}, \theta)$ , i = 1, ..., 34, where  $\theta$  represented the estimated parameters in the trained MSAE. The one-step forecasting of the number of the new confirmed cases of Covid-19 for each city is given by  $\hat{Y}_i = \hat{v}_i g_i$ , i = 1, ..., 34. The recursive multiple-step forecasting involved using a one-step model multiple times where the prediction for the preceding time step was used as an input for making a prediction on the following time step. For example, for forecasting the number of the new confirmed cases for the one more next day, the predicted number of new cases in one-step forecasting would be used as an observational input in order to predict day 2. Repeat the above process to obtain the two-step forecasting. The summation of the final forecasted number of the new confirmed cases for each province/city was taken as the prediction of the total number of the new confirmed cases of Covid-19 in China. Fig. S1 Architecture of modified autoencoder.



**Fig. S2** Forecasted duration, cumulative cases of outbreak end and risk of top 44 outbreak countries in the world.

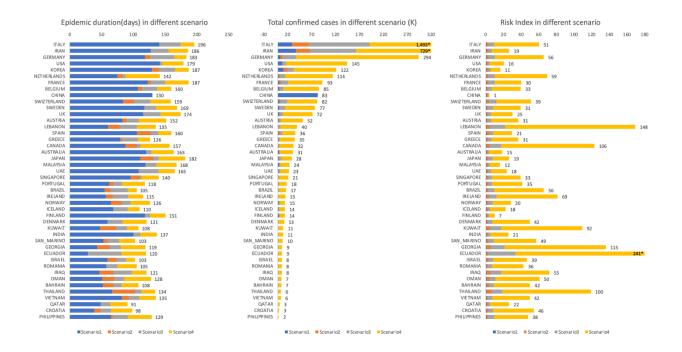
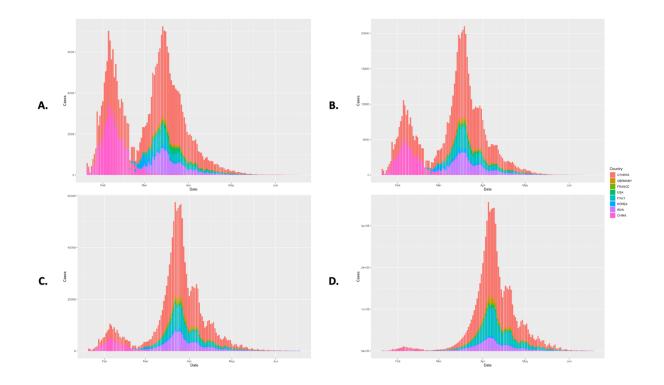
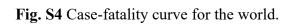
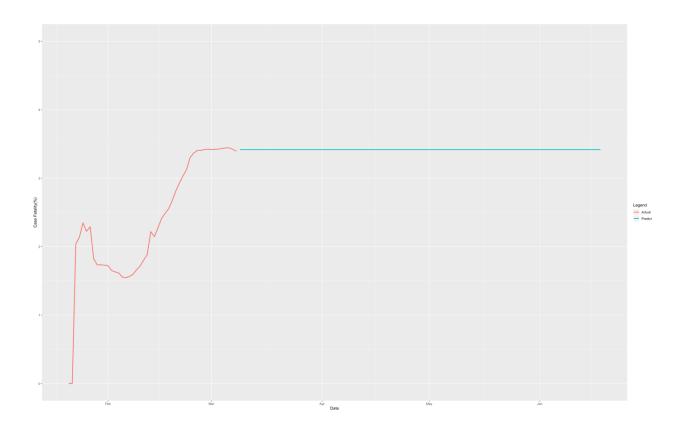






Fig. S3 Time-case plot of the top seven infected countries: China, Iran, Italy, Germany, South Korea, USA, France and all other countries. (A) Time-case plot under intervention scenario 1;(B) Time-case plot under intervention scenario 2; (C) Time-case plot under intervention scenario 3 and (D) Time-case plot under intervention scenario 4.







|                        |                |            | 1-step | 2-step | 3-step | 4-step | 5-step |
|------------------------|----------------|------------|--------|--------|--------|--------|--------|
|                        | Reported       | Forecasted | error  | error  | error  | error  | error  |
| Global                 |                |            |        |        |        |        |        |
| 3/1/2020               | 93,090         | 93,245     | 0.17%  |        |        |        |        |
| 3/2/2020               | 95,333         | 95,584     | 0.26%  | 0.91%  |        |        |        |
| 3/3/2020               | 98,192         | 98,381     | 0.19%  | 0.03%  | 1.18%  |        |        |
| 3/4/2020               | 101,927        | 101,234    | -0.68% | -0.51% | -0.68% | 0.41%  |        |
| 3/5/2020               | 105,587        | 105,798    | 0.20%  | 0.32%  | 0.23%  | -0.32% | 1.30%  |
| Absolute Average Error |                |            | 0.30%  | 0.45%  | 0.70%  | 0.37%  | 1.30%  |
| China                  |                |            |        |        |        |        |        |
| 3/1/2020               | 80,422         | 80,378     | -0.05% |        |        |        |        |
| 3/2/2020               | 80,565         | 80,508     | -0.07% | -0.01% |        |        |        |
| 3/3/2020               | 80,711         | 80,621     | -0.11% | -0.17% | -0.02% |        |        |
| 3/4/2020               | 80,813         | 80,713     | -0.12% | -0.21% | -0.18% | 0.07%  |        |
| 3/5/2020               | 80,859         | 80,756     | -0.13% | -0.17% | -0.20% | -0.15% | 0.20%  |
| Abso                   | lute Average E | rror       | 0.10%  | 0.14%  | 0.13%  | 0.11%  | 0.20%  |
| Other countries        |                |            |        |        |        |        |        |
| 3/1/2020               | 12,668         | 12,866     | 1.56%  |        |        |        |        |
| 3/2/2020               | 14,768         | 15,076     | 2.09%  | 5.92%  |        |        |        |
| 3/3/2020               | 17,481         | 17,760     | 1.59%  | 0.96%  | 6.70%  |        |        |
| 3/4/2020               | 21,114         | 20,521     | -2.81% | -1.69% | -2.60% | 1.70%  |        |
| 3/5/2020               | 24,728         | 25,042     | 1.27%  | 1.95%  | 1.63%  | -0.87% | 4.90%  |
| Absolute Average Error |                |            | 1.86%  | 2.63%  | 3.64%  | 1.28%  | 4.90%  |

Table S1. One- to five-step forecasting errors.

| State       | Peak Time | End Time  | Duration | Peak<br>(Cum) | Peak<br>(New) | Curr<br>Case | End<br>Case | Up<br>Slop | Down<br>Slop |
|-------------|-----------|-----------|----------|---------------|---------------|--------------|-------------|------------|--------------|
| Total       | 2020/3/19 | 2020/6/25 | 157      | 193,016       | 10,488        | 105,587      | 310,112     | 164.38     | -94.53       |
| China       | 2020/2/5  | 2020/5/19 | 130      | 31,432        | 5,236         | 80,859       | 82,740      | NA         | 0.00         |
| Iran        | 2020/3/19 | 2020/6/25 | 127      | 33,102        | 3,169         | 5,823        | 66,566      | 113.69     | -29.00       |
| Italy       | 2020/3/19 | 2020/6/19 | 141      | 32,734        | 3,228         | 5,883        | 64,096      | 62.41      | -29.93       |
| Korea       | 2020/2/29 | 2020/6/8  | 140      | 3,150         | 813           | 7,134        | 19,361      | 10.93      | -7.20        |
| Germany     | 2020/3/20 | 2020/6/1  | 126      | 5,182         | 530           | 795          | 10,331      | 9.22       | -5.79        |
| USA         | 2020/3/21 | 2020/6/12 | 142      | 3,649         | 491           | 213          | 9,550       | 6.67       | -4.06        |
| France      | 2020/3/18 | 2020/5/30 | 127      | 3,195         | 324           | 706          | 6,580       | 5.98       | -4.12        |
| Swizterland | 2020/3/21 | 2020/6/5  | 101      | 2,641         | 271           | 264          | 5,381       | 9.70       | -2.37        |
| Spain       | 2020/3/16 | 2020/6/6  | 127      | 1,703         | 216           | 430          | 4,012       | 4.78       | -2.59        |
| Belgium     | 2020/3/19 | 2020/5/28 | 114      | 1,798         | 197           | 169          | 3,725       | 4.24       | -2.35        |
| UK          | 2020/3/19 | 2020/5/25 | 115      | 1,694         | 187           | 210          | 3,496       | 3.62       | -2.32        |
| Netherlands | 2020/3/18 | 2020/5/20 | 83       | 1,456         | 169           | 188          | 3,351       | 8.83       | -2.41        |
| Japan       | 2020/3/18 | 2020/5/31 | 132      | 1,511         | 137           | 455          | 2,976       | 2.34       | -1.70        |
| Austria     | 2020/3/20 | 2020/5/24 | 89       | 1,242         | 129           | 104          | 2,507       | 5.70       | -1.64        |
| Sweden      | 2020/3/23 | 2020/5/27 | 117      | 1,280         | 124           | 161          | 2,467       | 1.56       | -0.96        |
| Finland     | 2020/3/29 | 2020/5/26 | 118      | 1,032         | 108           | 19           | 2,172       | 0.72       | -0.47        |
| Austrialia  | 2020/3/22 | 2020/5/23 | 120      | 896           | 109           | 74           | 2,115       | 1.23       | -0.96        |
| Malaysia    | 2020/3/21 | 2020/5/23 | 119      | 1,009         | 109           | 93           | 2,031       | 1.49       | -1.13        |
| Greece      | 2020/3/25 | 2020/5/18 | 82       | 824           | 83            | 66           | 1,635       | 1.74       | -0.52        |
| UAE         | 2020/3/20 | 2020/5/15 | 108      | 735           | 92            | 45           | 1,611       | 1.42       | -1.18        |
| Norway      | 2020/3/15 | 2020/5/17 | 81       | 536           | 78            | 147          | 1,538       | 3.74       | -1.13        |
| Singapore   | 2020/3/16 | 2020/5/12 | 110      | 400           | 51            | 138          | 1,062       | 0.94       | -0.86        |
| Canada      | 2020/3/22 | 2020/5/10 | 105      | 525           | 50            | 57           | 1,000       | 0.80       | -0.71        |
| Portugal    | 2020/3/20 | 2020/5/9  | 68       | 412           | 52            | 21           | 915         | 2.93       | -0.76        |
| Lebanon     | 2020/3/16 | 2020/5/9  | 78       | 258           | 47            | 28           | 887         | 1.92       | -0.84        |
| Iceland     | 2020/3/23 | 2020/5/8  | 68       | 398           | 43            | 45           | 805         | 2.07       | -0.59        |
| Iraq        | 2020/3/20 | 2020/5/2  | 68       | 330           | 36            | 54           | 657         | 1.33       | -0.58        |
| Ireland     | 2020/3/21 | 2020/5/6  | 67       | 277           | 33            | 19           | 578         | 1.44       | -0.44        |
| India       | 2020/3/23 | 2020/5/8  | 100      | 246           | 26            | 34           | 533         | 0.26       | -0.24        |
| Kuwait      | 2020/2/27 | 2020/5/6  | 73       | 43            | 31            | 62           | 496         | 0.68       | -0.33        |

**Table S2.** Spread of COVID-19 in 30 countries and whole world under delayed active intervention.

| State       | Peak Time | End Time  | Duration | Peak<br>(Cum) | Peak<br>(New) | Curr<br>Case | End<br>Case | Up<br>Slop | Down<br>Slop |
|-------------|-----------|-----------|----------|---------------|---------------|--------------|-------------|------------|--------------|
| Total       | 2020/3/22 | 2020/7/22 | 184      | 294,764       | 28,754        | 105,587      | 696,503     | 423.52     | -222.28      |
| Italy       | 2020/3/26 | 2020/7/17 | 169      | 97,631        | 9,170         | 5,883        | 190,731     | 159.06     | -72.06       |
| Iran        | 2020/3/22 | 2020/7/22 | 154      | 58,803        | 7,688         | 5,823        | 162,399     | 219.06     | -59.26       |
| China       | 2020/2/5  | 2020/5/19 | 130      | 31,432        | 5,236         | 80,859       | 82,740      | NA         | 0.00         |
| Germany     | 2020/3/26 | 2020/7/9  | 164      | 18,529        | 1,845         | 795          | 37,244      | 29.23      | -15.02       |
| Korea       | 2020/3/22 | 2020/7/3  | 165      | 17,021        | 1,285         | 7,134        | 32,502      | 18.29      | -11.18       |
| Finance     | 2020/3/25 | 2020/6/22 | 150      | 10,633        | 1,006         | 706          | 21,099      | 16.36      | -10.51       |
| Swizterland | 2020/3/25 | 2020/6/30 | 126      | 8,811         | 916           | 264          | 18,797      | 31.63      | -8.54        |
| USA         | 2020/3/26 | 2020/6/13 | 143      | 8,604         | 898           | 213          | 17,551      | 13.48      | -9.90        |
| Sweden      | 2020/3/26 | 2020/6/14 | 135      | 7,390         | 731           | 161          | 15,127      | 13.02      | -8.06        |
| Netherlands | 2020/3/26 | 2020/5/24 | 87       | 7,124         | 685           | 188          | 14,016      | 25.64      | -10.17       |
| Belgium     | 2020/3/26 | 2020/6/20 | 137      | 5,659         | 533           | 169          | 11,153      | 10.52      | -5.61        |
| UK          | 2020/3/22 | 2020/6/17 | 138      | 3,233         | 465           | 210          | 9,930       | 8.56       | -5.13        |
| Spain       | 2020/3/22 | 2020/6/18 | 139      | 3,564         | 388           | 430          | 8,512       | 7.15       | -4.23        |
| Japan       | 2020/3/22 | 2020/6/8  | 140      | 2,711         | 311           | 455          | 6,830       | 4.71       | -3.81        |
| Austria     | 2020/3/26 | 2020/6/12 | 108      | 3,379         | 321           | 104          | 6,626       | 10.70      | -3.54        |
| Malaysia    | 2020/3/22 | 2020/6/9  | 136      | 1,718         | 253           | 93           | 5,196       | 3.98       | -2.95        |
| Lebanon     | 2020/3/26 | 2020/6/5  | 105      | 2,375         | 239           | 28           | 4,771       | 7.00       | -2.89        |
| UAE         | 2020/3/22 | 2020/6/14 | 138      | 1,456         | 229           | 45           | 4,605       | 3.82       | -2.54        |
| Greece      | 2020/3/25 | 2020/6/12 | 107      | 1,882         | 215           | 66           | 4,278       | 7.15       | -2.27        |
| Austrialia  | 2020/3/26 | 2020/5/31 | 128      | 1,935         | 195           | 74           | 3,949       | 3.02       | -2.57        |
| Canada      | 2020/3/26 | 2020/5/16 | 111      | 1,941         | 199           | 57           | 3,879       | 3.14       | -3.25        |
| Norway      | 2020/3/22 | 2020/5/31 | 95       | 1,407         | 162           | 147          | 3,402       | 5.92       | -2.20        |
| Singapore   | 2020/3/26 | 2020/5/15 | 113      | 1,473         | 132           | 138          | 2,778       | 2.03       | -2.26        |
| Finland     | 2020/3/30 | 2020/6/3  | 126      | 1,362         | 138           | 19           | 2,731       | 1.81       | -1.34        |
| Portugal    | 2020/3/26 | 2020/5/23 | 82       | 1,129         | 115           | 21           | 2,276       | 4.81       | -1.65        |
| Brazil      | 2020/3/26 | 2020/5/27 | 91       | 1,083         | 110           | 19           | 2,206       | 4.04       | -1.59        |
| Iceland     | 2020/3/26 | 2020/5/31 | 91       | 868           | 100           | 45           | 2,066       | 3.64       | -1.16        |
| Ireland     | 2020/3/26 | 2020/5/31 | 92       | 918           | 98            | 19           | 1,876       | 3.61       | -1.19        |
| Iraq        | 2020/3/22 | 2020/5/31 | 97       | 587           | 83            | 54           | 1,754       | 2.86       | -1.14        |
| Denmark     | 2020/3/26 | 2020/5/19 | 83       | 808           | 80            | 31           | 1,579       | 2.69       | -1.21        |

**Table S3.** Spread of COVID-19 in 30 countries and whole world under further delayed active intervention.

# References

13. Charte D, Charte F, García S, Jesus MJD, Herrera F. A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines. Information Fusion;44:78–96. (2018)

14. Yuan X, Huang B, Wang Y, Yang C, Gui W. Deep Learning-based feature representation and its application for soft censor modeling with variable-wise weighted SAE. IEEE Trans on Industrial informatics, 14(7): 3235-3243. (2018)

15. K. Weiss, T.M. Khoshgoftaar, and D. Wang, "A survey of transfer learning," J. Big Data, vol. 3, no. 1, Dec. (2016)

16. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He. A Comprehensive Survey on Transfer Learning (2019). arXiv:1911.02685