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S1. Cholera seroincidence model and inference

The primary goal of these analyses is to estimate the proportion of the population infected by Vibrio
cholerae O1 in the previous year, which we refer to as the ‘seroincidence rate’ and denote as m. We use a
previously validated random forest model to classify whether each member of a recent nationally-representative
serosurvey was infected in the year before the before the survey. We treat the binary outcome of this model
like a diagnostic test, which when summarized at the population-level can be adjusted for sensitivity and
specificity. As detailed in the paper, the serosurvey was a two-stage cluster survey, with 70 communities
selected with probability proportional to each community’s population and at least 10 households (with at
least 40 total samples) sampled from each community.

We make three estimates of the seroincidence rate, all of which rely on a Bayesian hierarchical model
that is specified below. For the ‘survey estimate’, we assume that the nationwide estimate of seroincidence is
equivalent to the in-sample estimate of seroincidence, since the serosurvey sample was nationally representative.
For the ‘overall estimate’, we extrapolate the survey estimate to both the unsampled populations within
the sampled communities as well as to the 97,092 unsampled communities throughout Bangladesh. For the
‘spatial estimate’, we extend the survey estimate to the rest of the country using a logistic regression model
including covariates and a Matern spatial covariance function.

S1.1. Bayesian hierarchical model

We model the number of predicted seropositive people in each serosurvey household, z;, with a Bayesian
hierarchical model similar to that of Makela, Si, and Gelman,[1] augmented to account for the sensitivity and
specificity of the random forest model and with a binomial outcome in place of a Bernoulli outcome:

2, ~ Binomial(ny, 7011 + (1 — 71)(1 — bp)0)) (1)
T = logitfl(ac[h]) (2)
. ~ Normal(ag + v1log(N.), o?) (3)
ag,y ~ Normal(0,1) (4)
o ~ Normal™(0,1). (5)

The number of predicted seropositive people in a household, zj, is determined by the number of members
sampled in the household nj, and the probability of a household member testing positive. We separate the
probability of testing positive into two parts: the true positive rate, calculated as the household seroincidence
rate 7, multiplied by the sensitivity 6;);; and the false positive rate, calculated as the seronegative rate
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(1 — m,) multiplied by one minus the specificity (1 — 6j9). Each household in community c is assumed to
have the same underlying community-level rate a.. The community-level rate is logit normal with its mean
determined by the sum of a country-level intercept, o, and linear term to account for the (log) population
of each community (N, with coefficient ) and a variance 0. Since the probability that a community was
sampled was proportional to its population, we need to account for any relationship between community
population and seroincidence rate to control for confounding. As in Makela, Si, and Gelman, we use a
standard normal as a prior on g and v and a standard normal truncated to be positive as a prior for o.

Upon estimating 7, we can make predictions for the number of seroincident individuals in each sampled
household, gp:

9r = Binomial(np, 7p) (6)
H
gsurvey = Z :gh (7)
h=1
_ Zhec Qh 8
7Tsurvey,c - ﬁ ( )
hec
- . gsurvey (9)
survey — T .
> h=1"h

The number of seroincident individuals within a surveyed household is a binomial draw from that household
with probability 7. These draws can be averaged across each community to calculate the community-specific
survey estimates msyrvey,c Or across all households to calculate the nationwide survey estimate msyrvey-

We can also make predictions for the number of seroincident individuals in unsampled households within
sampled communities §ynobs and the number of seroincident individuals in unsampled communities Jynsamp
to calculate the overall seroincidence rate myyerair:

Cobs
Junobs = Y Binomial (Nc =, logit_l(ac)> (10)
c=1

he€c
c
gunsamp = Z Binomial (Nw 10git71 (aunsamp,c)) (11)
c=Cops+1
Qunsamp,c = Normal (ao + vlog(N.), 02) (12)

(gsu’rvey + gunobs + gunsamp)
C
Zc:l NC

We separate sampled and unsampled communities by using the first C,;5 indices of ¢ to represent sampled
communities, while indices Cyps + 1, ..., C' represent unsampled communities. For unobserved households
within sampled communities, we assume that the seroincidence rate is the same as that amongst the sampled
households, logitfl(ozc). For unobserved communities, we draw a new seroincidence rate logitfl(aunmmp,p‘),
where aunsamp,c is a draw from a normal distribution with a mean determined by a function of the country-
level intercept cvg and the population of that community N, and a variance of o2. The sum of these estimates
divided by the entire population is the overall estimate of the nationwide seroincidence, Toyeraii-

To fit the Bayesian hierarchical model and make both the survey and overall seroincidence estimates we
used a model built using the Stan probabilistic programming language.[2,3]

. (13)

Toverall =

S1.2. Integrated mested Laplace approzimations and the spatial estimate

Our primary estimate of the country-wide seroincidence used in the main analyses is however the spatial
estimate. To produce this estimate, we extend the community-specific survey estimates to the entire country
using a logistic regression model with a Matern spatial covariance function and covariates with integrated
nested Laplace approximations (INLA),[4] as described in the main text. Specificially, we fit an INLA model
to each of 1,000 posterior draws of community seroincidence from the Bayesian hierarchical model (described
above) and then predict the seroincidence for all 5km by 5km grid-cells across the country. In the end, we
generate 1,000 maps of cholera seroincidence rates and we take a population-weighted average to produce
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the nationwide spatial estimates. Our primary results are the median spatial estimate and the 95% credible
interval.

S1.8. Random forest predictions

Azman et al. fitted a random forest model using age, sex, vibriocidal titers (Ogawa and Inaba), anti-LPS
IgG and IgA antibodies, and anti-CTB IgG and IgA antibodies, and blood group to classify the seropositive
status of individuals from a longitudinal cohort study in Bangladesh.[5] Since no blood group information was
collected in the serosurvey, we fit a new random forest model to the cohort data using all of the remaining
covariates. For each observation in the cohort study, we use the proportion of trees that predict that
the observation is seropositive as the probability of seropositivity. From these probabilities, we calculate
the receiver operating characteristic (ROC) curve for the cohort predictions and calculate the cutoff that
maximizes the Youden’s J statistic, i.e. the sum of the sensitivity and the specificity. [6]

We use the random forest model to predict the seropositivity status of each participant in the serosurvey;
the participants whose probability of seropositivity exceed the Youden cutoff are classified as seropositive.
The serosurvey predictions are aggregated to the household unit, providing us with z; in Equation 1.

S1.4. Specificity and sensitivity of the random forest predictions

As with all imperfect tests, population-level (e.g., aggregated) random forest model seroincidence estimates
can be corrected for the test’s specificity and sensitivity, when known. To estimate the specificity and sensitivity
of this random forest model we conducted leave-one-individual-out cross validation (LOOCV) on the original
cohort data used in Azman et al., where the seropositive status of the participants was known. For each
individual in the cohort, we fit a random forest model to the rest of the cohort, calculate the Youden cutoff,
and predict the seropositivity of the left-out individual, which we call LOOCV predictions and denote z¢.

To estimate the specificity, fp)o in Equation 1, we include the LOOCV predictions in our Bayesian
hierarchical model:

zf | yi = 0 ~ Bernoulli(1 — o). (14)

The LOOCYV predictions of the seronegative observations from the cohort study (i.e. y; = 0) are Bernoulli
random variables with the probability of seropositivity equal to (1 — f)o).

The sensitivity of the random forest predictions, 6y, in Equation 1, varies across days since infection
due to the decay in antibody response over time. After infection with V. cholerae O1, most antibodies rise
including vibriocidals, one of the most informative markers, which peak around 7-10 days post-infection. As
time since infection increases, the antibody profile of an individual, in general, returns to pre-infection levels.
The vibriocidal titers decay quickly in the first three months before decaying more slowly over the following
three years. This decay is illustrated by the decline in raw sensitivity of the random forest predictions over
time (Table S1).

Table S1: The sensitivity of the random forest predictions of seropositivity over days since infection.

Days since infection = Observations Sensitivity

7-10 311 96.8%
24-41 293 97.3%
76-109 164 72.0%
154-199 137 46.7%
261-274 42 38.1%
353-363 37 32.4%

To account for this decay, we estimate the sensitivity as a time-varying quantity rather than as a static
quantity and rewrite the overall sensitivity as a joint probability:

by =P(Z=1|Y=1T)P(T|Y =1), (15)
~—
overall time-varying sensitivity daily probability
sensitivity of infection
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where Z is the result of the test (i.e. the random forest model), Y is the true seropositive status of the
individual, and 7T is the time since infection in days. We need to estimate the time-varying sensitivity
(P(Z=1|Y =1,T)) and the probability of being infected T'= ¢ days ago (P(T'| Y = 1)). Since sensitivity
only concerns seropositive individuals (i.e. Y = 1) and seropositivity is by our definition infection over the
past 365 days, T is restricted to be less than or equal to 365 days for all components of 6.

S1.4.1. Time-varying sensitivity

We estimate the time-varying sensitivity of the random forest predictions in the cohort study using a
logistic regression model with a cubic polynomial for the log of days since infection, similar to the method
used by Leisenring et al.:[7]

logit(Z | Y = 1,T = t) = By + B log(t) + B2 log(t)* + Bs log(t)®. (16)

We assume that the sensitivity of the test depends only on the time since infection, T'. The posterior
median and 95% credible interval for the sensitivity at each time since infection (from 7 to 365), P(Z =1 |
Y=1,T=7,...,365), is shown Figure SS1.
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Figure S1: The estimated sensitivity of the random forest model for identifying whether an individual was infected in the last
year by the number of days since true infection. The points represent the median estimate from a generalized logistic regression
model for sensitivity with cubic polynomial terms for the log of days since infection. The gray error bars represent the 95%
credible intervals.

S1.4.2. Daily probability of infection

The estimates of time-varying sensitivity allow us to calculate the overall sensitivity given the time since
infection, however we do not know this time for any individual in the serosurvey. We assume that individuals
only get infected once in the past year, such that the daily probabilities sum to one across t =1,...,365. We
assume that the risk of infection for each individual was uniformly distributed over the year before sample
collection:
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IP’(T:1|Y:1):]P’(T:2|Y:1):~~~:P(T:365|Y:1):%.

We set the expected value of any given time since infection to be equal to
hierarchical model allows for variability around each estimate.

Past work on clinical cholera has shown that there is seasonal variation of cholera in Bangladesh, which
varies regionally across the country.[8] While we do not expect that incorporating seasonality will greatly
affect our overall estimates of seroincidence, if more detailed estimates of seasonality were available across
the country, they could be used to refine estimates of these or future analyses.

1 .
555, however the Bayesian

S1.5. Other estimators and time frames

We fit several alternative models and observe the differences in their seroincidence estimates. We use an
‘unadjusted’ model, where our random forest estimates are not adjusted by sensitivity and specificity; ¢.e.
b1 + (1 — 74)(1 — Og)0) in Equation 1 is replaced by pp,. Previous work showed that a vibriocidal titer
(either Inaba and Ogawa) of at least 320 was the best threshold for maximimizing sensitivity and specificity
for identifying individuals infected in the previous year; thus we fit a ‘vibriocidal’ model which used these
predictions in place of the random forest predictions for z, in Equation 1. To see how the seroincidence
changed over multiple time frames, we also fit the random forest and vibriocidal models to 100 and 200 days
since infection. We use the equivalent of the overall estimate to conduct these additional analyses.

S1.6. Risk factors for seroposivity

We used a series of logistic regression models with a Matern spatial covariance function to explore
the association between seropositivity (random forest positive for individuals) and various individual-,
household- and community-level covariates. We explored both univariate relationship and multivariate
(linear) relationships between the covariates and the binary seropositivity outcome using models with and
without different random effects and spatial correlation. The ‘full’ model, used for the primary analyses in
manuscript, included a Matern spatial random field and random effects for both households and communities
(assumed to be independent and identically distributed with log-gamma priors). We also estimated the
relationship between the covariates and seropositivity with a model including no random effects for household
or community and only spatial correlation, and another model including only random effects for household
and community without spatial correlation.

S1.7. Results

The three methods produced similar estimates for the nationwide seroincidence rate for the 365-day period
preceding the serosurvey (Figure SS2). The median spatial estimate from the INLA 5km by 5km grid-cell
maps was 18.7% (95% CI: 8.7-26.8%) This corresponds to a median of 30.4 million (95% CI: 14.1-43.6 million)
individuals infected during that time period. The median overall estimate from the Bayesian hierarchical
model, Toperqn in Equation 13, was 20.7% (95% CI: 14.1-28.4%). The median in-sample estimate from the
same model, Tgyrpey in Equation 9, was 20.4% (95% CI: 15.1-26.4%)).

Coincidentally, the unadjusted 365-day random forest model estimates are similar to those of the estimates
adjusted for sensitivity and specificity, albeit with a narrower credible interval (median: 19.9%, 95% CI:
17.8-22.5%). By comparison, the vibriocidal model yields lower seroincidence rate estimates (median: 12.8%,
95% CI: 6.8-20.1%) than the models based on random forest estimates despite the fact that the proportion
of the serosurvey that had vibriocidal titers greater than or equal to 320 is similar to the proportion that
was classified as seropositive by the random forest model (19.5% vs. 19.9%). This is due to the vibriocidal
estimates having a lower specificity than the random forest models (Figure SS3).

S51.8. Mapping

From the grid-cell estimates, we can make a series of maps to observe the geographic variability of cholera
throughout Bangladesh. Maps of the median seroincidence rate and estimated number of annual infections
by grid cell are in the main manuscript (Figure 2). To help identify high-risk regions and our confidence
in the estimates, we calculated proportion of posterior grid-cell seroincidence estimates with a relative risk
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greater than two (Figure SS4). As in the manuscript, we see higher risk in the Bay of Bengal and in pockets
in the northwest and north, though less so in the northeast.

Figure SS5 investigates the variance of our estimates As variance scales with the size of the estimate,
it is difficult to interpret. The coefficient of variation, the standard deviation is divided by the mean, is
another measure often used but it can become very large for places where mean estimates are very small.
Instead, we use the width of the logged relative risk credible interval in this map. To do this, we first bound
all posterior samples of the relative risk to be between 0.25 and 4 (or —2 and 2 on the log2 scale), which
represent reasonable cutoffs for very high and very low risk as only 2.0% of samples across all grid cells are
greater than 4 and 16.0% are less than 0.25. Next, we take the log2 difference between the upper and lower
bounds of the 95% credible interval for each grid cell. Grid cells with a log2 difference of 4 have an upper
bound relative risk that is greater than 4 and a lower bound relative risk less than 0.25, indicating that we
are very uncertain of the true risk in that grid cell; 19.8% of the grid cells in our map have a log2 difference
of 4 and are displayed in white. Grid cells with a log2 difference of 0 have both upper and lower bounds
either above 4 or below 0.25 and would be indicated on the map with maximum opacity if there were any.
The colors on the map indicate the posterior median for that grid cell and the opacity indicates the log2
difference between the upper and lower bounds. This map demonstrates how the certainty in our estimates
fades with distance from the sampled communities.
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Figure S2: The estimated seroincidence rate distributions by estimator for the whole population (A) and by community (B).
The unadjusted random forest estimates (orange) do not account for sensitivity or specificity. The adjusted survey estimates
(light blue) are the in-sample estimates from the Bayesian hierarchical model which accounts for the sensitivity and specificity
of the random forest estimates. The adjusted overall estimates (green) are from the same model but including predictions for
unsampled communities. The adjusted spatial estimates (dark blue) extend the survey estimates to the rest of the country
using a logistic regression with a Matern spatial covariance function. Only the unadjusted random forest and adjusted survey
estimators make community-specific estimates in (B).
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Figure S3: The estimated seroincidence rate across varying infection window sizes and estimators. We estimate the seroincidence
rate with two different estimators across three window sizes (100, 200, and 365 days). The random forest uses age, sex, and
measurements of six antibodies (vibriocidal Inaba, vibriocidal Ogawa, anti-CTB IgG, anti-CTB IgA, anti-LPS IgG and anti-LPS
IgA) to classify individuals as seroincident. As a comparison, we use the historical convention where those with either vibriocidal
titers greater than or equal to 320 is classified as seroincident. The vibriocidal titer method has lower specificity, which yields
lower estimates of seropositivity than those from the random forest model. The estimate of the median seroincidence rate with
each estimator is displayed above its distribution. The estimates of the adjusted sensitivity and specificity for each estimator
and window size are presented in the table below the figure.
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Figure S4: Proportion of posterior samples with relative risk greater than 2 for each 5km x 5km grid cell.
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Figure S5: The median relative risk estimate for each 5km x 5km grid cell with the opacity determined by the width of the 95%
credible interval. White grid cells have 95% credible intervals where the lower bound is less than 0.25 and the upper bound is
greater than 4. Places with narrower credible intervals have greater opacity. The most opaque cells are those where both the
upper and lower bound are either less than 0.25 or above 4.

S9



S1.9. Leave-one-out cross validation
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Figure S6: The results from leave-one-out cross validation. Results from cross-validation where each grid cell was held out of the
INLA model, one at a time, and the posterior predictive mean for that location was estimated (y-axis). The blue dashed line
illustrates the best fitting linear model prediction. The solid orange line is the best fitting linear model prediction from a naive
model that predicts the average of the mean of the other sampled grid cells.
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S1.10. Risk Factors for seroposivity
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Figure S7: Estimates of odds ratios for seropositivity from different models.

S2. Additional descriptive analyses

In this section we present additional descriptive analyses to illustrate the distributions of each of the
antibody levels in different ways and characteristics of the cohort.
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Figure S8: Population pyramid of survey participants. Dots illustrate the expected proportion of each age-sex category according
to the 2012 Bangladesh census.
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Figure S9: Distributions (smoothed) of antibodies measured by ELISA. Smoothed densities estimated using ggplot with default
parameters (geom-_density) with locations of data points shown in the rug plot below.
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Figure S10: Distributions (smoothed) of vibriocidal antibodies. Smoothed densities estimated using ggplot with default
parameters (geom_density) with locations of data points shown in the rug plot below.
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Figure S11: Distributions of ELISA antibody titers by age. Dots represent individual datapoints and lines represent the fit of a
generalized additive model using a cubic spline.
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Figure S12: Distributions of vibriocidal antibody titers by age. Dots represent individual datapoints and lines represent the fit
of a generalized additive model using a cubic spline.
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Figure S13: Smoothed maps of the antibody levels for each biomarker based on generalized additive models (GAMs) including a
thinplate spline for geographic coordinates and age. Predictions are made for individuals of age 25 to reflect that of adults.
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