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Image Acquisition 

MRI measurements were acquired from three MR scanners, with two 3T MR scanners (Skyra, Siemens and Trio, 

Siemens) and one 1.5TMRscanner (Avanto, Siemens). DWI images were acquired using a spin-echo type 

echo-planar (SE-EPI) sequence with b values of 0 and 1000 s/mm2. Following acquisition, ADC maps were 

calculated from the diffusion scan raw data in a pixel-by-pixel manner. The parameters are summarized in 

Supplementary Tab. 1. 

 

Supplementary Table1 Scan Parameters 

 
Skyra Trio Avanto 

DWI GRE DWI GRE DWI GRE 

Repetition (ms) 5200 220 3100 566 3800 576 

Echo time (ms) 80 2.46 99 20 102 20.4 

Number of excitations  1 1 3 1 3 1 

Field of view (mm2) 240×240 240×240 200×200 230×230 240×240 240×240 

Matrix size 130×130 180×288 132×132 166×256 192×192 173×256 

Slice thickness（mm） 5 5 6 6 5 5 

Slice spacing（mm） 1.5 1.5 1.8 1.8 1.5 1.5 

Number of slices 21 21 17 17 21 21 

DWI, diffusion-weighted imaging; GRE, gradient recalled echo 

 

 

 



Supplementary Table 2 Patient Characteristics and Consistency Test 

Training Set AIS Data (n=417) HI Data (n=240) 

Age, mean [min-max] 62 [31-86] 68 [24-93] 

Male sex, number (%) 168 (40%) 94 (39%) 

Classification, number (%)  

Normal 7036 (82%) 4101 (76%) 

AIS 1597 (18%) 426 (8%) 

HI 0 840 (16%) 

Consistency test (manual 1-2)  

Kappa coefficient 0.97 0.98 

Testing Set AIS Data (n=319) HI Data (n=65) 

Age, mean [min-max] 66 [23-88] 64 [33-89] 

Male sex, number (%) 124 (39%) 19 (29%) 

Classification, number  

AIS, mean [min-max] 
TI 5.1 [1-26] 

5.9 [1-27] 
LI 1 [1-1] 

HI, mean [min-max] 0 4.1 [1-26] 

Lesion volume, mm3  

AIS, mean [min-max] 
TI 3487.8 [102-28701] 

8050.1 [215-46951] 
LI 41.6 [5-313] 

HI, mean [min-max] 0 925.4 [26-12420] 

Consistency test (manual 1-2)  

ICC [95% CI] 
TI 0.98 [0.97-0.99] AIS 0.97 [0.95-0.98] 

LI 0.96 [0.95-0.97] HI 0.99 [0.99-1] 

AIS, acute ischemic stroke; HI, hemorrhagic infarction; LI, lacunar infarction; TI, territorial infarction; ICC, 

intraclass correlation coefficient 

 

 

 



CNN Architecture 

Different from the classical networks such as AlexNet and visual geometry group network (VGG), we used a 

global average pooling layer followed by a dense layer, which indicated the probability that the current slice 

contained a lesion, instead of using several fully connected layers at the top of the convolution layer. Each 

image slice was resampled to a voxel size of 0.87 mm×0.87 mm and then cropped to a matrix size of 256×256. 

All of the images were then normalized to images with zero mean and unit variance. In the training stage, the 

feature maps in the last convolution layer were processed by a global average pooling (GAP) layer, which 

outputs the mean value of each feature map. The mean values were further processed by a dense layer for 

classification. In the testing stage, we directly output the feature maps of the last convolutional layer, and used 

the weighted sum as the localization results to generate a class activation map (CAM). The weights were 

obtained by copying the weights of the last dense layer. A probability map can then be obtained by normalizing 

the pixel intensities as 

𝑥" =
𝑥$

max
$∈)*+

𝑥$
× 𝑦./01,	

where 𝑥$ is the intensity of pixel 𝑖 on the CAM, and 𝑦./01 is the output value of the classifier, which indicates 

the probability that any lesion is found in the slice. 

CNNs, such as VGG and residual neural network (ResNet), were initially designed for classification. In the 

classification task, determining the kind of object presented in the image is the goal; therefore, it is not 

necessary to preserve the spatial location information of an object. Such CNNs were thus designed with very 

small sized feature maps in the last several convolution layers. In our task, we needed to answer two questions: 

whether a lesion appears and the location of the lesion. Therefore, we had to extract the sematic information and 

preserve the spatial information at the same time. To this end, we used a truncated version of the well-applied 

CNN by only using the output of the convolution layer, which provided feature maps with heights and widths 

that were at most 8 times smaller than the original input. 

Transfer learning techniques in which the network weights were initialized by using the results of the 

pretrained ImageNet were used to improve the performance of the network on small datasets. The network is 

then fine-tuned by using the stochastic gradient descent (SGD) method with the Nesterov momentum as the 

optimizer, an initial learning rate of 0.001 and a momentum of 0.9. During training, 300 image slices were 

randomly chosen from the training set for validation. A dynamic training policy was adopted, in which we 

monitor the loss value for the validation samples at the end of each training epoch, and the learning rate is 



reduced by a factor of √0.1 if the validation loss does not improve for 10 epochs. An early-stopping method, in 

which the training stops if no progress is made in 30 epochs, was adopted to avoid overfitting. 

 

Evaluation Metrics 

To evaluate the performance of the CAM-based methods, we proposed several lesion-wise metrics using 3D 

connected component analysis. In particular, for a single subject, probability map was first generated for each 

individual slice, and the probability maps were stacked on the z-axis to generate the predicted probability map 

of the subject. We thenconverted the predicted probability map to a binary segmentation map by thresholding 

and then measured the per-subject mean numbers of false positive lesions (mFP-L), false negative lesions 

(mFN-L) and true positive lesions. A false negative lesion (FN-L) was defined as a connected volume on the 

ground truth label that had no overlapping volume with any connected volumes on the predicted segmentation. 

A false positive lesion (FP-L) was defined as a connected volume on the predicted segmentation that had no 

overlapping volume with that on the ground truth. If a lesion appears on both the ground truth and predicted 

segmentations, we defined it as a true positive lesion (TP-L). The mFP-L and the mFN-L were then calculated 

by respectively averaging the FN-Ls and FN-Ls for all tested subjects. We further defined the lesion-wise 

sensitivityand precision as 

 

Sensitivity = Recall =
TPL

TPL + FNL 

and 

Precision = Positive	predictive	value =
TPL

TPL + FPL 

respectively, to evaluate the lesion-wise performance.  

In addition, the subject-wise detection rate also matters in clinical diagnosis. We used the number of failed 

detected subjects (FD-S) to evaluate the subject-level performance. 


