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Molecular Diagnostics 

P. vivax Infection Detection  

DNA was extracted from dried blood spots using Chelex-100 (Bio-Rad, Hercules, CA) 
and Saponin as previously described.1,2 P. vivax infections were detected using a two-stage 
approach that combined a TaqMan quantitative PCR (qPCR) assay targeting the 18S rRNA gene 
and a confirmatory nested-PCR assay.3,4 A two-step approach was utilized to increase specificity 
and limit potential false positives given the range of cycle-threshold (CT) values considered.  

For the qPCR assay, individual reactions were performed at a final volume of 18 μL: 5 
μL of template DNA, 9 μL of FastStart Universal Probe Master Mix (ROX) (Roche Diagnostics, 
Indianapolis, IN), 0.36 μL of each primer at 20 μM, 0.36 μL of probe at 10 μM, and 2.92 μL of 
molecular grade water (Supplementary Table 1). All qPCR reactions were performed on a 
QuantStudio 6 Flex Real-Time PCR System (ThermoFisher Scientific, Waltham, MA, USA) 
using the following thermal cycling conditions: hold at 50°C for 2 minutes, denaturation at 95°C 
for 10 minutes, and 45 cycles of 95°C for 15 seconds and annealing at 60°C for 1 minute. All 
bulk qPCR reactions included two replicates of positive controls: 10-fold standard dilutions of a 
P. vivax 18S PCR plasmid clone (MRA-178, BEI Resources, Manassas, VA, USA) from 4,550 
parasites/μL (10-4 ng/μL) to 4.55 parasites/μL (10-7 ng/μL), assuming 6 copies of 18S per 
parasite.5,6 In addition, four non-template controls were added to each qPCR plate. For all qPCR 
runs, a threshold of 0.04 log change in Rn was set and results were then exported for analysis. 
Any samples with uncharacteristic amplification profiles, or samples with amplification prior to 
13 cycles, were marked as undetermined. 

To confirm the presence of P. vivax infections, all samples that were positive by qPCR 
underwent reflex confirmatory screening using a nested PCR assay.4 The first round of the 
nested PCR assay targeted a 1.6-1.7 kilobase region of the 18S gene specific to the Plasmodium 
genus using the Plu1 and Plu5 primers (Supplementary Table 1). For the first round PCR, 
reactions were performed in a final volume of 25 μL: 5uL of sample DNA, 12.5uL HotStarTaq 
Mastermix (Qiagen, Venlo, Netherlands), 0.5 μL of 20 μM each of the forward and reverse 
primers, and 6.5 μL molecular grade water. PCRs were performed on a BioRad T100 Thermal 
Cycler (Applied Biosystems, Foster City, CA, USA) using the following thermocycler 
conditions: 95°C for 15 minutes followed by 35 cycles of 94°C for 1 minute, annealing at 50°C 
for 1 minute, and extension at 72°C for 1 minute, with a final extension at 72°C for 10 minutes. 
Product from the first round of PCR was handled in a designated post-PCR section of the 
laboratory to inhibit contamination of pre-PCR work surfaces. The second round PCR reaction 
targeted a 121 base pair region specific to P. vivax using the rViv1 and rViv2 primers 
(Supplementary Table 1).  The second round reaction recipe was identical to the first round 
reaction recipe with the exception that the PCR product from the first round was used as the 
DNA template for the second round. Thermal cycling conditions were the same with the 
exception of a raised annealing temperature of 62°C. Final PCR product was visualized using 5% 
ethidium bromide on a 1% agarose gel run in 1x Tris-borate-EDTA buffer at 100 volts for 1 
hour. Positive confirmation of P. vivax was based on visualization of the 121 base pair PCR 
amplicon and was evaluated by two reviewers independently. A confirmed infection was only 
considered when reviewers were in agreement. Among the 579/17,972 qPCR-positive samples, 
the inter-observer agreement of the absence/presence of a PCR band was high (Agreement: 
564/579, Cohen’s  = 0.80). 



 

 

 
 

Assay Primer Sequence Ref. 

Diagnostic qPCR 

PvForward 5’-ACGCTTCTAGATTAATCCACATAACT 

3 PvReverse 5’-ATTTACTCAAAGTAACAAGGACTTCCAAGC 

Pv-probe (FAM-
IowaBlack) 5’-TTCGTATCG/ZEN/ACTTTGTGCGCATTTTGC 

Confirmatory PCR 

Plu1 5’-TCAAAGATTAAGCCATGCAAGTGA 

4 
Plu5 5’- CCTGTTGTTGCCTTAAACTCC 

rVivi1 5’-CGCTTCTAGCTTAATCCACATAACTGATAC 

rVivi2 5’-ACTTCCAAGCCGAAGCAAAGAAAGTCCTTA 

 
Supplementary Table 1 - P. vivax Infection Detection Assays: The adapted protocols used for diagnostic qPCR 
and confirmatory PCR in the detection of P. vivax infections. For the qPCR assay, the probe differs from Srisutham 
et al. 2017 in the use of FAM as the fluorescent label, an additional ZEN quencher, and the use of Iowa Black as the 
3’ terminus quencher. All probes and primers were synthesized by Integrated Device Technology, Inc. (San Jose, 
CA, USA).  
 

P. vivax Infection Assay Validation and Challenge 

To assess the lower limit of detection of the P. vivax TaqMan assay, the P. vivax 18S 
qPCR plasmid clone (MRA-178, BEI Resources, Manassas, VA, USA) was diluted to 1.0 x 10-6 
ng/μL and then serially diluted 2-fold to a lower limit of 0.03125 x 10-6 ng/μL. The assay was 
then ran with 12 replicates for the 1.0 x 10-6  and five 1.0 x 10-5 dilutions and with 22 replicates 
for the remaining dilutions (Supplementary Table 2). Cycle threshold values were read at a log 
change in Rn value of 0.04—identical to settings used for the detection of P. vivax infections. 
Overall, the 95% lower limit of detection for P. vivax was approximately 7 parasites/μL 
(assuming 6 copies of 18S per parasite), or a DNA concentration of 1.50 x 10-7 ng/μL 
(Supplementary Table 2).  

In addition, the specificity of the assay was challenged using 20 replicates of 18S plasmid 
concentrated at 1.0 x 10-4 ng/μL for P. falciparum (MRA-177, BEI Resources), Plasmodium 
malariae (MRA-179, BEI Resources), and Plasmodium ovale (MRA-180, BEI Resources), 
respectively.5,6 In all challenges, no off-target amplification was observed (Supplementary Figure 
1).  

 
 
 
 
 
 
 



 

 

Target 
concentration  
(x 10-6) ng/μL 

No. Tested No. Detected Percent 
Detected 

Average 
parasites/μL 

Mean Ct 
(of detected) 

Pv 18S 1 12 12 100 45.50 32.68 

Pv 18S 0.5 12 12 100 22.75 34.40 

Pv 18S 0.25 22 22 100 11.38 35.98 

Pv 18S 0.125 22 20 90.91 5.69 37.45 

Pv 18S 0.0625 22 14 63.64 2.84 38.69 

Pv 18S 0.03125 22 6 27.27 1.42 38.54 

Pf 18S 100 20 0 0 -- -- 

Pm 18S 100 20 0 0 -- -- 

Po 18S 100 20 0 0 -- -- 

Supplementary Table 2 - P. vivax Lower Limit of Detection and Off-Target Amplification: The concentrations 
of the 18S plasmid for each of the Plasmodium spp.: P. vivax (Pv), P. falciparum (Pf), P. malariae (Pm), and P. 
ovale (Po), are provided alongside the number of replicates tested. The percent detected was calculated as the 
proportion of replicates identified with a cycle threshold value less than 45 among those tested. Among those 
samples that were detected, the mean cycle threshold value is provided.  Abbreviations: No. – number, Ct – cycle 
threshold. 

 
 
 
 
 
 



 

 

 
Supplementary Figure 1 - P. vivax qPCR Specificity Challenge: Amplification of P. vivax 18S plasmid dilutions 
containing 4,550 (1), 455 (2), 45.5 (3), and 4.55 (4) parasites/μL. Each P. vivax dilution was tested with eight 
replicates. Amplification failed for all 20 replicates of P. falciparum, P. malariae, and P. ovale 18S plasmids 
(concentration: 1x10-4 ng/μL). 
 

Duffy-Genotyping 

For each sample that was positive by qPCR, we used a previously validated high-
resolution melt (HRM) assay to genotype the GATA-1 transcription factor (-33 T:C) point 
mutation that has been previously shown to silence Duffy Antigen/Chemokine Receptor (DARC) 
expression.7,8 Each HRM reaction contained a final concentration of 1x MeltDoctor HRM 
Master Mix (Applied Biosystems, Foster City, CA, USA), 0.3 μM forward primer (DARCf), 0.3 
μM reverse primer (DARCr), 100 pg of template DNA in a final volume of 20 μM 
(Supplementary Table 3). Reactions were performed using the following thermocycler 
conditions: denaturation at 95°C for 10 minutes, followed by 45 cycles of 95°C for 15 seconds, 
60°C for 1 minute, 95°C for 10 seconds, 60°C for 1 minute, 95°C for 15 seconds, and 60°C for 
15 seconds on a QuantStudio 6 Flex Real-Time PCR System (ThermoFisher Scientific, 
Waltham, MA, USA). Each HRM plate contained a DARC-positive (-33 C:C), DARC-negative 
(-33 T:C), and a non-template control which were used to call HRM results on each plate 
independently.  
 Samples that could not be definitively determined by HRM and a 10% random subset of 
P. vivax qPCR-positive samples underwent confirmatory Sanger sequencing genotyping at Eton 
Bioscience (Research Triangle, NC). PCR products were generated from a previously validated 
assay.9 Final reactions contained 0.25 μL of FastStart High Fidelity Taq (Enzyme Blend; 
Roche©, Indianapolis, IN), 2.5 μL of 10x FastStart High Fidelity reaction buffer with 18 mM 
MgCl2, 0.36 μM forward primer, 0.36 μM reverse primer, 250 μM dNTPs and 3 μL of template 
DNA in a volume of 25 μL. Reactions were amplified using the following thermocycler 
conditions: denaturation at 94°C for 15 minutes followed by 40 cycles of 94°C for 30 seconds, 
annealing at 58°C for 30 seconds, extension at 72°C for 90 seconds, and a final extension at 



 

 

72°C for 10 minute on a BioRad T100 Thermal Cycler (Applied Biosystems, Foster City, CA, 
USA). PCR products and Sanger sequences were also generated for a DARC-positive control (-
33 C:C) and DARC-negative control (-33 T:C). 
 For each sample, forward and reverse sequences were analyzed using Geneious 10.1.3 
(Biomatters Limited, Auckland, New Zealand). First, the 5’ and 3’ ends of each sequence was 
trimmed using Geneious `Trim Ends` tool with a 0.05 error probability limit. For each sample, 
forward and reverse sequences were then de novo assembled using the Geneious `Assembler` 
tool with the sensitivity flag set to “Highest Sensitivity/Slow”. Of the 51 randomly samples 
sequenced, one sample was unable to be assembled due to low sequencing quality. Of the 17 
samples that underwent confirmatory sequencing, all samples were assembled. The mapped 
sequences were then visually assessed for the DARC (-33 T:C) point mutation. Duffy-Genotypes 
by Sanger sequencing were concordant with the HRM-qPCR results among the remaining 50/51 
samples selected for validation.  
 
 
 

Assay Primer Sequence Ref. 

HRM Genotyping 
DARCf 5’-CGTGGGGTAAGGCTTCCTGA 

7 
DARCr 5’-CTGTGCAGACAGTTCCCCAT 

Confirmatory PCR 
ESf 5’-GTGGGGTAAGGCTTCCTGAT 

9 
ESr 5’-CAAACAGCAGGGGAAATGAG 

 
Supplementary Table 3 - DARC-Genotyping Primers: All samples that were positive by qPCR underwent 
genotyping at the Duffy Antigen/Chemokine Receptor (DARC) promoter region using High Resolution Melt (HRM) 
Analysis. A subset of randomly selected samples and those samples that could not be absolutely confirmed by HRM 
underwent confirmatory Sanger sequencing of a GATA-1 transcription factor amplicon that contained the region of 
interest. 



 

 

Epidemiological Analyses 

Study Population and Data Sources 

In the Democratic Republic of the Congo (DRC), the Demographic Health Survey (DHS) aims 
to create a nationally representative survey using a two-stage stratified cluster sampling design.10 
In the first stage, clusters, or enumeration area, are selected with a known and fixed probability. 
During the second stage, within each cluster, a subset of households are selected. Finally, among 
those adults residing in selected households, a subset are consented for HIV and other biomarker 
testing. To control for this sampling scheme, the DHS weights each individual with an inverse 
probability weights of selection, hereafter, sampling weights.10  

The DRC 2013-2014 DHS survey was conducted from August 2013 - September 2013 
and November 2013 - February 2014. Specifically, DHS surveyors screened Kinshasa and 
surrounding areas from August 2013 - September 2013 and then subsequently administered the 
survey across the rest of the country from November 2013 - February 2014.  

For each household, DHS surveyors acquired informed consent and administered a 
substantial questionnaire to all individuals that had slept in the household the night prior to the 
interview.10 Individuals that permanently reside in the household are classified as de jure while 
individuals that were coincidentally in the household the night preceding the interview were 
classified as de facto.10 Given that household variables were considered as potential malaria risk 
factors, we limited observations to the de jure population, as de facto individuals’ homes may 
differ substantially from the home that they were visiting.10  

Among those adults that agreed to undergo HIV and other biomarker testing, a dried 
blood spot (DBS) was taken. DBS were then punched into 96-well plates and associated 
barcodes were manually recorded in a spreadsheet in the DRC. The 96-well plates were then sent 
to the University of North Carolina-Chapel Hill (UNC) for malaria testing.  

In total, 17,959/17,972 samples with properly formatted barcodes were screened by 
qPCR at UNC. These samples were then linked to the DHS HIV (AR) recode excluding the 288 
samples that were contaminated during shipment from the DRC to UNC. On the initial merge, 
17,859/17,959 samples were successfully linked. In order to recover more samples, we allowed 
for a one-character mismatch between the manually recorded DBS barcode and the DHS barcode 
among those samples that did not have a match in the preliminary merge. Using this strategy, we 
successfully recovered an additional 75 samples accounting for our total of 17,934/17,959 
samples that were screened by qPCR. Among these 17,934 samples, 169 samples failed to 
amplify human beta-tubulin, which was used as a within-sample positive control, and thus, were 
excluded from the study population.1 Of these 17,765 samples, 1,402 were missing geospatial 
data (44 clusters), 237 individuals were not de jure household members, 535 have sampling-
weights set to zero, and 17 had missing risk-factor covariate information and were excluded from 
the study. As a result, the total study population consisted of 15,574 individuals (Supplementary 
Figure 3). We assumed that all samples lost due to shipping contamination, failure to amplify 
human beta-tubulin, barcode typos, and missing geospatial data were due to “accidents” and 
were missing completely at random. Additional samples were excluded under the DHS sampling 
framework (i.e. missing sampling weights, de jure).10 As a result, from this refined dataset, we 
had only 17/15,591 (0.11%) observations that were missing conditional on factors not considered 
in our study.  



 

 

 

 
 
Supplementary Figure 2 - Flowchart of Study Participants that were Included in the Study: Of the 18,257 
Demographic Health Survey (DHS) records that had a dried blood spot, 15,574 were included in the final study 
population. Abbreviations: Quantitative polymerase chain reaction - qPCR.  
 

Covariate Feature Engineering 

 From the DHS questionnaires, we used data from the household members recode (PR), 
the HIV testing recode (AR), the geospatial covariate (GC) dataset, and the geographical dataset 
(GE).10  Data from the CD2013 was downloaded using the `rDHS` package.11  

In addition to the data provided by the DHS, we downloaded data from several open 
sources, including: (1) waterways lines and polygon shape-files for the DRC from the 
Humanitarian OpenStreetMap Team database 
(https://data.humdata.org/dataset/hotosm_cod_waterways; accessed October 30, 2019); (2) 
locations of public hospitals within sub-Saharan Africa 
(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JTL9VY; Accessed 
October 30, 2019) 12; and (3) non-human ape (NHA) territories from the International Union for 
Conservation of Nature Red List database (https://www.iucnredlist.org/; accessed January 21, 
2019). Temperature data for the 2013-2014 DRC DHS study period was downloaded from the 
Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive 
Center (Goddard Space Flight Center, Greenbelt, MA). Specifically, we downloaded monthly 



 

 

layers of land surface temperature and emissivity data from the MYD11C3 (v6) product with a 
0.05° x 0.05° spatial resolution (accessed September 20, 2019).13 Monthly precipitation data with 
a 0.05° x 0.05° spatial resolution was downloaded from the Climate Hazards Group Infrared 
Precipitation with Stations (CHIRPS) server using an R-wrapper package (GitHub: 
`environmentalinformatics-marburg/heavyRain`) for the CD2013 study period.14 OpenStreetMap 
extracts from Geofabrik (https://www.geofabrik.de/data/download.html) for Africa (accessed 
August 23, 2019) were downloaded and used as the road network input into the Open Source 
Routing Machine (`ORSM`) tool.15 Finally, additional map features included: (1) ocean spatial 
polygons from Natural Earth (naturalearthdata.com); (2) geographical base-map layers from the 
Database of Global Administrative Areas (http://www.gadm.org/); and (3) country geographies 
from the R-package, `rnaturalearth`.16 

Prior to analysis, we identified risk factors for P. vivax and P. falciparum from a 
comprehensive literature review.1,17–19 The relationships among risk factors and our outcome of 
interest, malaria (i.e. either P. vivax or P. falciparum) was modeled using a directed acyclic 
graph (DAG) with the `daggity` graphical user interface and R-package (Supplementary Figure 
3).20 As a result, not all risk factors identified were measured and included in the analysis. 
Although anemia and anti-malarial use were considered to be a priori risk factors, both were 
determined to have cyclic relationships with our outcome of interest, malaria, and were excluded 
(i.e. anemia and anti-malarial use could not be resolved by the DAG). 
 

 

 
Supplementary Figure 3 - Malaria Risk Factor Directed Acyclic Diagram: Risk factors were identified from an 
extensive literature search. Similarly, the causal relationships among the risk factors were based on the literature 
review and putative associations. Based on our directed acyclic diagram (DAG), we expected urbanicity, altitude, 
age, and biological sex to all be unconfounded in expectation (no ancestor nodes).   



 

 

 
 
The majority of risk factors were abstracted from the DHS recodes and kept in their 

original form with the exception of standardizing continuous variables. Dichotomized variables 
were set to have an a priori protective referent level. Housing type was coded as either 
“traditional” or “modern” based on a composite score of floor, wall, and roof type as previously 
outlined by Tustings et al. 2017. We also considered any house that had a metal roof as 
“modern”, given recent findings that metal roofs alone appear to be protective against malaria.21   

Given that the DHS wealth variable accounts for housing type in its calculation, we 
recreated the wealth variable in order to avoid issues of collinearity and non-independence 
between the housing and wealth covariates.10,19,22 The wealth covariate was recreated using the 
factor-score approach based on the instructions by Rustein 2015 and Tustings et al. 2017. Wealth 
factor scores were then considered as a continuous covariate in order to smooth over issues of 
positivity in wealth and residual confounding. 

We defined insecticide treated net (ITN) usage based on the definition outlined in 
Tustings et al. 2017, which limits the ITN classification to long-lasting insecticidal nets less than 
or equal to three-years-old at the time of the survey, convention ITNs that were less than or equal 
to one-year-old at the time of the survey, or any net that was retreated within a year of the 
survey. All other net-usage was coded as “no net” alongside those individuals that reported not 
using a net the night prior to the survey.10   

The distance from a hospital covariate was coded as the average duration of travel in 
minutes between a respective cluster and all public hospitals within the cluster’s catchment area. 
A catchment area was defined as a circle with a 100 km radius with the cluster’s location as the 
centroid. Catchment areas were considered in order to better approximate overall cluster 
accessibility to health-sites, which may otherwise be biased if a cluster is close to a single 
hospital but far from all others. If all hospitals were farther than 100 km from a given cluster, the 
minimum duration between the cluster and all hospitals was considered in place of the catchment 
area. Travel times were calculated using the OSRM tool.15 Among the 489 clusters considered, 
one cluster (469) could not be resolved by OSRM. As a result, the hospital distance for cluster 
469 was considered as the average duration among its five nearest-neighbor clusters. Clusters 
were then coded as “near” or “far” from public hospitals if they were within 120 minutes of 
average travel time or not, respectively.12 Distance to water was measured as the minimum 
greater circle distance between a cluster and a body of water that was either labeled as a “river” 
or “lake” by the OpenStreetMap water-type (Humanitarian OpenStreetMap Team database). 
Greater circle distances were measured using the R `sf` package.23,24 

Given that the 2013-2014 DRC DHS was conducted in two phases, with the first phase 
contained to Kinshasa and surrounding regions during months that coincided with the dry-
season, while the remaining areas were surveyed during months mostly coinciding with the 
rainy-season, we elected to take the average monthly temperature and monthly precipitation 
across the six-months included in the study. Although previous studies have shown that lagging 
precipitation and temperature can improve predictions of malaria transmission in some cases, we 
felt that we were unable to lag our weather covariates without introducing spatial confounding.25–

29 As a result, for each cluster in a given study-period month, we first took the average amount of 
precipitation or daytime temperature among all raster squares within 2 km or 10 km radius of the 
cluster. The 2 versus 10 km boundary depended on the cluster’s designation as urban or rural 
designation, respectively. This approximates the offsets of geographical coordinates applied by 



 

 

the DHS for each cluster.10,30 We then aggregated these catchment-area averages for each month 
into a final study period average. Among the 489 clusters considered, four urban clusters (200, 
225, 271, 419) had missing values for temperature and/or precipitation. For these four clusters, 
the radius was extended to 6km and precipitation and temperature means were calculated as 
described above. 

Correlations among risk factors were evaluated using the Szekely-Rizzo-Bakirov distance 
correlation with the `energy` R package.31–33 Based on the covariate-pairwise correlations, we 
determined that covariate collinearity was manageable and no covariates needed to be excluded 
from the analysis (Supplementary Figure 4). 

 
 

 
Supplementary Figure 4 - Covariate Collinearity: The correlation between each pair of covariates were explored 
for potential bias due to extreme collinearity. Although there were strong correlations that were consistent with a 
priori expectations (e.g. wealth and urbanicity, temperature and altitude), these correlations did not appear to be 
completely dependent. As a result, all covariates were kept in the analysis.  
 
 

Species Interactions  

Interactions between P. vivax and P. falciparum were examined using an extended version of the 
independent acquisition of infection model put forth by Akala & Watson et al. 2019 to account 
for individuals that were not infected but still considered in the study population. As in the 



 

 

previous model, we used the observed frequency of each parasite species to fit the expected 
frequencies of mono-species and co-species infections using a multinomial likelihood. An 
additional category -- uninfected -- was added as a parameter to the multinomial model to 
account for the case when no successful infectious bites occurred. As a result, the unobserved 
sequence of species,  that can be passed to a host is now modeled as: 
 
 

 
 
Where  was previously defined as the set of Plasmodium species of interest and  as the number 
of infectious bites a host received.34 Otherwise, the model was unchanged. For the P. vivax-P. 
falciparum model, we considered  as a Poisson distribution and drew 50,000 bootstrap 
iterations to form the expected infection compositions. Expected infection compositions were 
then compared against the observed mono- and co-infection data. Overall, mono-infection and 
co-infection compositions were consistent with the expectation of independent acquisition of 
parasites, as the observed data fell within the simulated data (Supplementary Figure 5). 
 
 

 
Supplementary Figure 5 - Composition of P. vivax and P. falciparum Co-infections: The expected versus 
observed composition of P. vivax and P. falciparum infections were explored using a multinomial likelihood model. 
The plot shows the expected distribution for individuals without infection (“noinfxn”), P. falciparum infections 
(“pf”), P. vivax infections (“pv”), and P. falciparum- P. falciparum coinfections (“pf/pv”). The blue shading 
indicates the 95% bootstrapped interval and the red-dotted line indicates the observed number of cases for each 
infection category. Overall, the observed data is very consistent with the simulated data. 



 

 

 
 
 
 Interactions between NHA territories and P. vivax prevalence were assessed using a 
permutation test with 10,000 iterations. Null distributions for the permutation test were 
calculated by drawing  clusters at random, where  was the number of 2013-2014 DRC 
DHS clusters that overlapped with NHA territories. We then calculated the prevalence of P. 
vivax infections among the selected clusters. We considered NHA territories for (1) Pan 
troglodytes and Gorilla sp. and (2) Pan troglodytes, Pan paniscus, and Gorilla sp., separately, as 
P. paniscus (bonobos) have only recently been shown to harbor P. vivax-like parasites at a single 
field-site (TL2).35 In contrast, Pan troglodytes (chimpanzees) and Gorilla sp. have previously 
been shown to harbor P. vivax-like parasites at various prevalences across the DRC.36  From the 
permutation tests, NHA territories and P. vivax prevalence were not associated (p = 0.32 and p = 
0.30, respectively). This lack of an association is also evident when visualizing a map of NHA 
territories and cluster level P. vivax prevalences (Supplementary Figure 6).   
 

 
 
Supplementary Figure 6 - P. vivax and Non-Human Ape Distributions: Overall, P. vivax prevalence did not 
appear to be associated with non-human ape (NHA) habitat distribution. This lack of a P. vivax - NHA association 
was recapitulated with permutation testing. Clusters with P. vivax infections are shaded on a purple-yellow spectrum 
with respect to the cluster-level prevalence. Clusters without P. vivax infections are indicated by black X-ticks. 
Finally, the distribution of each non-human ape habitat is indicated in shades of green for the Gorilla genus and blue 
for the Pan genus.  
 



 

 

Inverse Probability Weights and Prevalence Odds Ratios 

 The average effect of each risk-factor, , on our binary outcome of interest  (i.e. 
malaria infection), was estimated using marginal structural models (MSMs):  

, where  is a logit link for our prevalence odds ratio effect 
estimates.37–40 For each MSM, we adjusted for confounders, , using inverse probability weights 

(IPWs).37–40 IPWs were modeled as  for each individual,  in the study 
population, . Each weight was stabilized by the marginal mean of the risk factor, such that final 

weights were:  . In the case of a binary risk factor,   was a 
probability mass function with each level of  representing the predictive probability of 
receiving a risk factor given a sequence of confounders. Similar, in the case of a continuous 
treatment,  was a probability density function with each level of  representing the 
predictive probability of receiving a dose of the risk factor given a sequence of confounders. In 
the continuous setting, we assumed that  and  followed normal distributions and 
could be estimated with a standard normal density.37,39,41  
 IPWs were calculated using the super learner algorithm with spatial cross-validation.42–45 
We used a diverse set of candidate algorithms, as the super learner is expected to 
asymptomatically outperform any individual candidate algorithm as the number of candidate 
algorithms becomes polynomial in sample size (Supplementary Table 4).42–44 In some cases, if 
IPWs appeared to be unstable, we limited the candidate algorithm library to either logistic or 
linear regression, depending on the outcome type (Supplementary Table 5). We assumed that a 
single iteration of the super learner algorithm was adequate to predict the IPWs. 
 

Base Learner R-package, 
Function 

Relevant Hyperparameters Justification 

Generalized Linear 
Regression* stat, lm/glm 46 - - 

Cross-Validated 
L1/L2 Regularized 

Regression (x3) 
glmnet, cvglmnet 47 

α: 1 
α: 0.5 
α: 0 

 

Shrinkage of covariates based 
on fit 

Boosted Generalized Additive 
Modeling mboost, gamboost 48 - Non-linearity in covariates 

K-Nearest Neighbor kknn, kknn 49 k: 7 
Kernel: optimal 

Interactions, Non-linearity in 
Covariates 

Single Vector Machines e1071, svm 50 
Cost: 1 

Kernel: radial 
 

Interactions, Non-linearity in 
Covariates 

Neural Net nnet, nnet 51 Hidden Layers: 1 
Units in Hidden Layer: 3 

Interactions, Non-linearity in 
Covariates 

Random Forest ranger,  ranger 52 Number of Trees: 500 
Variables at Node split: √p 

Interactions, Non-linearity in 
Covariates 

 
Supplementary Table 4 - Base Learners used in the Super Learner Algorithm: Various base learners were 
inputted into the super learner algorithm. The super learner algorithm is an ensemble based method that optimizes 



 

 

the predictions of base learners using a loss-based approach that minimizes the prediction error. A diverse suite of 
base learners was selected to account for various non-linear effects as well as interactions among covariates.  
 
 

Folds for cross-validation were based on K-means clustering of geographical coordinates 
to account for potential spatial autocorrelation among observations.45 We selected a K of 15, as it 
was the inflection point that appeared to minimize the within-cluster sum of squares while 
avoiding overfitting (Supplementary Figure 7). 

 
 

 
Supplementary Figure 7 - Spatial Cross-Validation K-Clusters: The DRC was partitioned into K-clusters for 
spatial cross-validation. Based on the geographical K-means total within-cluster sum-of-squares, fifteen clusters 
appeared to be a reasonable inflection point that did not overfit the data but still captured natural geographic 
partitions in the DRC (left). The fifteen partitions are mapped to show the geographical partition (right).  
 
 

All machine-learning models were built and analyzed using the `mlr` package, which 
provides a machine-learning infrastructure within the R-environment.53 The super learner 
algorithm was selected for IPW calculations to account for issues of functional form and non-
linearity that can bias predictions.54. For each risk factor, we considered all descendants and 
ancestors of the risk factor and the outcome that were not on the causal pathway as predictors in 
the IPW-model to account for any “backdoor” paths not considered in our DAG, (i.e. the IPW 
adjustment set).37 For risk-factors that were unconfounded in expectation (i.e. biological sex, 



 

 

age, urbanicity, and altitude), no adjustment set was considered (Supplementary Figure 3). 
Weights were incorporated with the R `survey` package and base R functions.55  

Overall stability of the IPWs were assessed visually and were determined to have log-
transformed standard normal distribution (Supplementary Figure 8). IPW distributions that are 
not definitively centered may suffer from lingering issues of structural positivity or may be 
correctly identifying multimodal distributions in risk-factor distributions.  

 
 
 
 

 

 
Supplementary Figure 8 - Distribution of Inverse Probability Weights: For each covariate, the distribution of 
weights for the 15,574 individuals included in the study are shown. Distributions have been log-transformed and 
appear to be approximately normally distributed. Abbreviations: Hospital Dist. – Distance to hospital, Trad. – 
traditional, ITN – insecticide treated net, Num. – number, Water Dist – Distance to water. 
 

 
The effects of the IPW on baseline risk-factor associations (i.e. putative confounding) were 
assessed using Szekely-Rizzo-Bakirov distance correlations for each risk-factor pair.31–33 Given 
that a weight option is not specified in the Szekely-Rizzo-Bakirov distance correlation 
calculation, we applied our IPWs by sampling observations according to their IPWs. To account 
for variability in sampling, we created 100 IPW-pseudopopulations for each risk-factor pair. The 



 

 

distribution of pairwise distance correlations for the risk factors was then plotted and compared 
with no weights applied and with IPWs applied (Supplementary Figure 9).  
 
 
 

 
 
Supplementary Figure 9 - Correlation among Covariates at Baseline and After Application of Inverse 
Probability Weights: A classic measure of confounding is baseline correlations among covariates, or the unequal 
distribution of covariates among different treatment classes. Shown for each covariate are the measures of pairwise 
covariate correlation at baseline (top) and after inverse probability weights (IPWs) have been considered (bottom). 
Baseline covariates show a large degree of correlation -- potentially indicating confounding -- while, for the most 
part, covariates with IPWs applied show a considerable reduction in pairwise covariate correlations (mean fold-
reduction: 3.14, range: 0.85 - 7.63). Interestingly, temperature appeared to still have somewhat high pairwise 
correlations even after applying IPWs. Abbreviations: Hospital Dist. – Distance to hospital, Trad. – traditional, ITN 
– insecticide treated net, Num. – number, Water Dist – Distance to water. 
 
 
 
 
 
 
 



 

 

Covariate Cross-Validated Risk 
Coefficient Base Learner 

Precipitation 1 Simple Linear Regression 

Temperature 0.16 Simple Linear Regression 

Temperature 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Temperature 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Temperature 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Temperature 0.19 Support Vector Machines (libsvm) 

Temperature 0.12 K-Nearest-Neighbor regression 

Temperature 0.51 Gradient Boosting with Smooth Components 

Temperature 0.03 Neural Network 

Temperature 0 Random Forests 

Water Dist. 0.10 Simple Linear Regression 

Water Dist. 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Water Dist. 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Water Dist. 0.31 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Water Dist. 0 Support Vector Machines (libsvm) 

Water Dist. 0 K-Nearest-Neighbor regression 

Water Dist. 0 Gradient Boosting with Smooth Components 

Water Dist. 0.20 Neural Network 

Water Dist. 0.39 Random Forests 

HIV (+) 1 Logistic Regression 

Farmer 0 Logistic Regression 



 

 

Farmer 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Farmer 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Farmer 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Farmer 0.56 Gradient boosting with smooth components 

Farmer 0.23 Support Vector Machines (libsvm) 

Farmer 0.01 k-Nearest Neighbor 

Farmer 0.18 Neural Network 

Farmer 0.02 Random Forests 

Wealth 0 Simple Linear Regression 

Wealth 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Wealth 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Wealth 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Wealth 0.02 Support Vector Machines (libsvm) 

Wealth 0.41 K-Nearest-Neighbor regression 

Wealth 0.57 Gradient Boosting with Smooth Components 

Wealth 0 Neural Network 

Wealth 0 Random Forests 

Education 1 Logistic Regression 

Housing Materials (Trad.) 1 Logistic Regression 

ITN Use (No) 1 Logistic Regression 

Hospital Dist. 0 Logistic Regression 

Hospital Dist. 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 



 

 

Hospital Dist. 0 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Hospital Dist. 0.98 GLM with Lasso or Elasticnet Regularization (Cross Validated 
Lambda) 

Hospital Dist. 0 Gradient boosting with smooth components 

Hospital Dist. 0 Support Vector Machines (libsvm) 

Hospital Dist. 0.02 k-Nearest Neighbor 

Hospital Dist. 0 Neural Network 

Hospital Dist. 0 Random Forests 

 
Supplementary Table 5 - Cross-Validated Risk and Contribution of Base Learners for each Covariate: Given 
that the super learner algorithm optimizes the contribution of individual base learners, not all base learners are 
included in the final predictions for each covariate. In some instances, super learner predictions resulted in unstable 
weights. As a result, we culled the base learner library to either a linear or logistic regression algorithm for 
continuous and dichotomous covariates, respectively (indicated by a 1 in the Cross-Validated Risk Coefficient 
column). Abbreviations: Hospital Dist. – Distance to hospital, Trad. – traditional, ITN – insecticide treated net, 
Num. – number, Water Dist – Distance to water. 
 
 
 
 
 

Risk Factor Species IPTW-
pOR 

IPTW-
pOR, L95 

IPTW-pOR, 
U95 pOR pOR, L95 pOR, U95 

Age Pv 0.97 0.87 1.07 0.97 0.87 1.07 

Altitude Pv 1.13 0.88 1.45 1.13 0.89 1.44 

Education (Lower) Pv 0.91 0.64 1.3 0.99 0.74 1.34 

Farmer Pv 1.42 1.08 1.88 1.32 1 1.75 

HIV (+) Pv 0.93 0.33 2.67 1.86 0.76 4.54 

Hospital Dist. Pv 0.86 0.53 1.4 0.86 0.53 1.38 

Housing Materials (Trad.) Pv 1.12 0.62 2.04 1 0.64 1.57 

ITN Use (No) Pv 0.76 0.55 1.04 0.8 0.58 1.09 



 

 

Precipitation Pv 0.79 0.63 0.99 0.78 0.63 0.97 

Sex (Male) Pv 1.17 0.89 1.53 1.17 0.89 1.54 

Temperature Pv 0.83 0.62 1.11 0.78 0.62 0.97 

Urbanicity (Rur.) Pv 1.13 0.7 1.83 1.13 0.7 1.82 

Water Dist. Pv 1.19 0.93 1.52 0.97 0.79 1.19 

Wealth Pv 1.12 0.78 1.59 0.93 0.81 1.07 

Age Pf 0.81 0.77 0.86 0.81 0.77 0.86 

Altitude Pf 0.73 0.65 0.82 0.73 0.66 0.8 

Education (Lower) Pf 1.44 1.25 1.67 1.18 1.02 1.35 

Farmer Pf 1.03 0.9 1.18 1.08 0.94 1.24 

HIV (+) Pf 0.54 0.18 1.58 0.5 0.26 0.93 

Hospital Dist. Pf 1.15 0.89 1.48 1.37 1.1 1.7 

Housing Materials (Trad.) Pf 1.25 0.98 1.61 1.84 1.54 2.19 

ITN Use (No) Pf 1.23 1.07 1.42 1.27 1.11 1.45 

Precipitation Pf 0.96 0.83 1.12 0.99 0.87 1.12 

Sex (Male) Pf 1.31 1.2 1.43 1.31 1.2 1.43 

Temperature Pf 1.41 1.05 1.9 1.07 0.97 1.19 

Urbanicity (Rur.) Pf 0.7 0.54 0.89 0.7 0.56 0.86 

Water Dist. Pf 0.87 0.77 0.99 1.12 0.99 1.28 

Wealth Pf 0.82 0.73 0.92 0.75 0.69 0.81 

 
 
Supplementary Table 6 - Inverse Probability Weight (IPW) Adjusted and Unadjusted Prevalence Odds 
Ratios for the Malaria Risk Factors: Inverse probability weight (IPW) adjusted and unadjusted prevalences odd 
ratios (pOR) risk factor effect estimates for P. vivax (Pv) and P. falciparum (Pf) are provided with corresponding 
95% confidence intervals. IPW adjustments were performed using the super learner algorithm. Unadjusted estimates 
are modeled using generalized estimating equations with a logit-link and binomial variance accounting for the DHS 



 

 

sample-weights. These bivariate association models are essentially two-by-two tables weighted for the 2013-2014 
Demographic Health Survey in the Democratic Republic of the Congo sampling scheme. In instances where the 
adjusted and unadjusted estimates are the same (age, biological sex, urbanicity, and altitude), the risk factor was 
expected to be unconfounded at baseline and IPWs were not considered (Supplementary Figure 3). Abbreviations: 
Hospital Dist. – Distance to hospital, Trad. – traditional, ITN – insecticide treated net, Rur. - rural, Num. – number, 
Water Dist – Distance to water. 
 
 
 

Spatial and Raster Feature Engineering 

In order to incorporate the risk factor covariate information into our spatial models, we 
downloaded spatial raster data for significant risk factors identified by the MSMs. The 
precipitation raster was used from above, with the surface consisting of mean values over the 
study period. To account for the risk factor associated with farming, we downloaded a raster of 
light intensity and land coverage for the DRC.  Specifically, we used the 2015 annual night light 
composite vcm-orm-ntl version raster 
(https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html, accessed Nov 8, 2019), which 
provides an average night-light intensity for each point in the DRC at a 15 arcsecond 
resolution.56,57 In addition, the vcm-orm-ntl version has been pre-processed to exclude outliers 
and spurious measurements due to fires or cloud coverage.56,57  The 2015 annual night light 
composite raster was selected as rasters for 2013 and 2014 were not available. Land coverage in 
the DRC was accessed through the Land Cover Climate Change Initiative (CCI) Climate 
Research Data Package from the European Space Agency Climate Change Initiative, which 
provides yearly land coverage maps at 300 x 300 meter resolution for 1992-2015 
(https://maps.elie.ucl.ac.be/CCI/, accessed Nov 8, 2019). Specifically, we used the 2013 land 
coverage raster and reclassified raster points as a binary of cropland or not-cropland based on the 
CCI classifications (values 10, 20, 30, 40, Yes; all others, No; Supplementary Figure 10).  
From these raster surfaces, we then aggregated raster points to fit within the DHS cluster design 
and DHS province boundaries. Specifically, for each cluster and covariate of interest, we took 
the mean value from all raster squares within a 2 km or 10 km radius with respect to the cluster 
urban/rural designation.10,30 For each province, all raster cells within the province boundary were 
aggregated and summarized as a mean value. 

As described above, precipitation values were standardized. Similarly, cropland 
proportion was transformed onto the real-line using a logit-transformation and was then 
standardized. Given that most points in the DRC had no measured light-intensity throughout the 
year, night-light standardization was performed under a zero-truncated framework (i.e. 
standardization did not include zeros). As above, standardization was performed in favor of 
model stability.  
 
 
 
 



 

 

 
Supplementary Figure 10 - Spatial Raster Covariates: Spatial covariates that were associated with P. vivax 
infection by the risk factor analysis were included in the spatial prediction prevalence models and included: 
precipitation (A) and farming. Farming was captured through the proportion of crops (B) at each raster cell as well 
as raster cell night light intensity (C) across the DRC.  
 

Bayesian Mixed Spatial Models and Predictions 

Prevalence maps were fit as mixed generalized linear models with spatially correlated 
random effects in a Bayesian framework. We modeled prevalence at two different levels: (1) 
Province-level using the `CARBayes` R-package and (2) Cluster-level using the `PrevMap` R-
package.58,59 DHS sampling weights were accounted for by rounding the number of cases, ,  to 
the nearest whole individual in order to conform with the binomial error distribution of our 
model. For the province-level models, there are  total survey regions, such that , and 
survey regions are defined as non-overlapping areal units with defined boundaries: 

. Risk factors that were identified as significant were included as linear 
predictors, . As a result, the model was specified as:  
 

 
 

 
Following Lee 2017, for the province-level model, the spatial ( ) and non-spatial ( ) 
random effects were modeled using a random effect,  with the conditional-autoregressive prior 
proposed in Leroux et al. 2000 (hereafter referred to as the Leroux CAR model). Specifically,  
 



 

 

 

 
 

 
 
The adjacency matrix, , was a simple neighborhood matrix, where border sharing was 
indicated as a binary.60 Models with the  parameter fixed at one assume complete spatial 
autocorrelation among the random effects (i.e. the Intrinsic CAR or Besag model), while models 
the  parameter fixed at zero assume independence.61–63 By allowing  to vary under the model, 
as specified above, we can fit this spatial autocorrelation process.58,61  Finally, we set the 
multivariate Gaussian mean prior  as a vector of zeros and the diagonal elements of the 
covariance matrix, , to 50,000.58 

 For the cluster model, the survey region is the DHS second-level enumeration area, 
which is a collection of households aggregated at a single set of GPS coordinates (i.e. clusters).10 
In total, there are there are  total clusters, where  and clusters (i.e. sampling locations) 
are indexed as:   . As a result, the model was specified as:  
 

 
 

Following the model presented in Giorgi and Diggle 2017, the spatial random effect, , 
was modeled as a stationary isotropic Gaussian process with variance  and a Matérn covariance 
function, . Here,  is the distance between any two clusters, . Based on an 
exploratory analysis of the  that maximized the log-likelihood of our logit-transformed 
prevalence data, we fixed  at 1. The remainder of the model was specified using diffuse priors:  
 

 
 

 
 

 
 Each model was first evaluated with four diagnostic chains using 1,000 burn-in iterations 

and 10,000 sample iterations. Chains were then visually assessed for convergence and 
appropriate mixing patterns. A final long chain with 10,000 burn-in iterations and 100,000 
sampling iterations was then considered for each model. Chains were again visually assessed and 
all parameters were required to have an effective sample size of at least 500. The effective 
sampling size was calculated with the `coda` R package while the highest posterior density 
interval (HPDI) was calculated with the `HDInterval` package for the `CarBayes` models (the 
HPDI is provided by `PrevMap`) 64,65.   

For the province level, predictions were calculated from the fitted province responses. 
These posterior responses were aggregated as means and standard errors for each province.  

For the cluster level, predictions were made out-of-sample using the fitted covariates 
under the assumption of a multivariate Gaussian distribution as previously described in Giorgi 
and Diggle 2017. Covariate observations for predictions were taken from the precipitation, crop-
proportion, and night light intensity rasters described above. For the crop-proportion and night 
light intensity raster, we aggregated the rasters to a 0.05° x 0.05° resolution by taking the mean 
and sum of raster cells, respectively (a 0.05° x 0.05° resolution was selected as this was the least 



 

 

precise spatial resolution among the covariates). For each of the prediction sampling locations, 
the covariate matrix was calculated by taking the mean value for each raster cell within a six km 
radius (mean of DHS maximum offset).10,30 Any value in the covariate prediction matrix that 
exceeded the observed maximum in our fitted covariate matrix was truncated (i.e. the observed 
maximum for each covariate served as an upper bound among the predictions to avoid 
extrapolation). Predictions were then calculated for each of the 100,000 sampling iterations and 
aggregated as means and standard errors. For the sake of computational burden, we subsetted the 
approximately 160,000 potential prediction sampling locations in the DRC that would need to be 
estimated at 100,000 sampling iterations (16 billion estimates) to 20,000 randomly selected 
sampling locations. To map the unsampled sampling locations, we performed local interpolation 
using inverse distance weighting and an inverse power parameter of two with the R `gstat` 
package.66,67 
 
 
 

 
Supplementary Figure 11 - Spatial Model Standard Errors: The standard errors of the posterior prevalence 
distribution for the final province-level (left) and cluster-level (right) and model. For the final province-level model, 
the standard error range was small (range: 4.44 x 10-3, 2.76 x 10-2). Standard errors at the province-level appeared to 
be greatest along the Eastern and Western borders. Similarly, the final cluster-level model exhibited a small standard 
error range (range: 1.62 x 10-8, 2.30 x 10-6). Standard errors were highest where the prevalence estimates were 
greatest, indicating a degree of uncertainty that coincides with higher covariates values (Supplementary Figure 10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Level Model Parameter Mean Median 2.5% 
HPDI 

97.5% 
HPDI Effective N DICg 

Province 

Intercept 

Intercept -3.58 -3.58 -3.71 -3.45 27,002 

-55.65  0.52 0.46 0.16 1.01 15,797 

 0.35 0.30 0.00 0.80 11,425 

Covariate 

Intercept -3.59 -3.59 -3.71 -3.46 11,162 

-61.96 

Precip. 0.03 0.03 -0.28 0.37 636 

Crop Prop. 0.22 0.21 -0.08 0.53 1,014 

Nightlight -0.22 -0.22 -0.47 0.04 1,869 

 0.46 0.40 0.11 0.96 2,762 

 0.30 0.24 0.00 0.76 7,585 

Cluster 

Intercept 

Intercept -2.66 -2.64 -6.49 1.20 92,453 

1,331,975.70 
 7.57 5.30 0.78 20.60 4,543 

 37.21 38.91 19.55 50.00 18,353 

 3.16 3.11 2.24 4.21 1,844 

Covariate 

Intercept -2.66 -2.64 -5.37 -0.11 71,797 

157,849.23 

Precip. -0.04 -0.04 -0.32 0.24 19,276 

Crop Prop. 0.06 0.06 -0.22 0.34 18,305 

Nightlight -0.08 -0.08 -0.55 0.40 19,862 

 3.59 2.78 0.64 8.80 6,757 

 35.44 36.98 16.82 50.00 13,206 

 3.22 3.18 2.23 4.25 1,949 

 
Supplementary Table 7 - Spatial Model Parameter Estimates and Fits: The posterior mean, posterior median, 
and 95% highest posterior density interval (HPDI) summary statistics are provided for each parameter with respect 
to the models evaluated. The fit of each model was calculated using Gelman’s deviance information criteria and 
compared at the province-level and cluster-level, respectively. Overall, the best fitting province-level and cluster-
level models included a precipitation, crop, and night light intensity covariate. For reference, the posterior  values 
for each province are also provided (Supplementary Table 8).  
 
 
 
 
 



 

 

Model Province Mean Median 2.5% HPDI 97.5% 
HPDI Effective N 

Intercept 

Bas-Uele -0.27 -0.26 -0.88 0.33 49662 
Equateur 0.92 0.92 0.50 1.36 4439 

Haut-Katanga -0.32 -0.32 -0.79 0.14 22758 
Haut-Lomami -0.24 -0.23 -0.82 0.33 63915 

Haut-Uele -0.21 -0.19 -0.93 0.47 52444 
Ituri 1.03 1.03 0.62 1.47 2967 

Kasai -0.06 -0.05 -0.55 0.42 58547 
Kasai-Central -0.36 -0.35 -0.83 0.13 46811 
Kasai-Oriental 0.31 0.31 -0.15 0.77 5144 

Kinshasa -0.80 -0.80 -1.24 -0.37 10242 
Kongo-Central -0.69 -0.68 -1.24 -0.16 25972 

Kwango -0.38 -0.37 -0.85 0.07 30992 
Kwilu 0.15 0.15 -0.27 0.57 5581 

Lomami -0.01 0.00 -0.43 0.41 41269 
Lualaba -0.50 -0.48 -1.19 0.16 57783 

Mai-Ndombe -0.26 -0.26 -0.72 0.18 37433 
Maniema 0.34 0.34 -0.08 0.76 30291 
Mongala 0.84 0.83 0.42 1.25 12839 

Nord-Kivu 0.44 0.46 -0.05 0.86 931 
Nord-Ubangi -0.19 -0.17 -0.87 0.46 61733 

Sankuru -0.13 -0.12 -0.70 0.43 58822 
Sud-Kivu -0.06 -0.06 -0.54 0.39 2478 

Sud-Ubangi 0.09 0.09 -0.43 0.59 35362 
Tanganyika -0.31 -0.30 -0.95 0.28 62905 

Tshopo 0.80 0.80 0.40 1.21 26008 
Tshuapa -0.13 -0.12 -0.67 0.39 50960 

Covariate 

Bas-Uele -0.22 -0.22 -0.98 0.55 1585 
Equateur 1.09 1.08 0.57 1.63 1555 

Haut-Katanga -0.29 -0.28 -0.74 0.16 18098 
Haut-Lomami -0.01 -0.01 -0.68 0.72 3428 

Haut-Uele -0.21 -0.20 -1.01 0.53 3980 
Ituri 0.72 0.72 0.08 1.37 982 

Kasai -0.16 -0.15 -0.69 0.37 3791 
Kasai-Central -0.44 -0.43 -0.96 0.06 4439 
Kasai-Oriental 0.21 0.21 -0.21 0.61 4953 

Kinshasa -0.13 -0.12 -1.23 0.98 1880 
Kongo-Central -0.85 -0.83 -1.54 -0.20 3048 

Kwango -0.36 -0.35 -0.85 0.12 5457 
Kwilu -0.02 -0.02 -0.48 0.44 1822 

Lomami 0.22 0.21 -0.36 0.81 2029 
Lualaba -0.30 -0.29 -1.04 0.43 7227 

Mai-Ndombe -0.13 -0.13 -0.63 0.37 5164 
Maniema 0.25 0.25 -0.23 0.73 2520 
Mongala 0.57 0.56 0.05 1.10 2171 

Nord-Kivu 0.26 0.27 -0.28 0.80 801 
Nord-Ubangi -0.25 -0.24 -1.02 0.50 3034 

Sankuru -0.20 -0.19 -0.78 0.38 7946 
Sud-Kivu -0.19 -0.18 -0.84 0.49 786 

Sud-Ubangi -0.04 -0.04 -0.63 0.56 2770 
Tanganyika -0.18 -0.17 -0.86 0.47 9500 

Tshopo 0.73 0.72 0.28 1.19 2789 
Tshuapa -0.08 -0.07 -0.62 0.47 19404 

 
Supplementary Table 8 - Summary of the posterior for each province: The posterior mean, posterior median, 
and 95% highest posterior density interval (HPDI) was calculated with respect to the province. These are provided 
for reference. 



 

 

post-hoc Power Calculations  

Power calculations were simulated from a population of 15,490 individuals (the weighted 
 from our study population), where the probability of exposure,  was varied at 10%, 25%, 

and 50% within the population. For the P. vivax models, the overall prevalence of the outcome, 
, was set at 3% but was varied in the unexposed group from 0.01 - 3.0% ( ). In contrast, for 

P. falciparum models, the overall prevalence of the outcome was set at 30% and was varied in 
the unexposed group from 1.0 - 30.0%. ORs were simulated under the following framework:  

 
 

 
 

 
 
As a result, from the exposure status, , and disease status, , we can calculate the simulated 
OR using the standard generalized linear model function with a logit-link in R. Power was 
calculated as the number of iterations that the parameter estimate  was less than 0.05 with 
respect to each OR.  
 

 
Supplementary Figure 12 - Power Calculations for P. vivax and P. falciparum: We performed a posteriori 
power calculations to determine the minimum detectable risk factor at varying levels of exposure with 80% power 
given the prevalence of P. vivax and P. falciparum in our study. At the lowest exposure probability (lowest expected 
power), we could detect a harmful prevalence odds ratio of approximately 1.54 and 1.18 for P. vivax (“Pv”) and P. 
falciparum (“Pf”), respectively.



 

 

Population Genetics  

Hybrid Selection and Next Generation Sequencing 

Samples from the DRC were amplified using the Illustra Genomic Phi V2 DNA Amplification 
Kit (GE Healthcare Life Sciences, Pittsburgh, PA) and prepared for sequencing using the 
NEBNext Ultra DNA Library Prep Kit for Illumina (New England BioLabs Inc., Ipswich, MA). 
Amplified libraries were then enriched using custom MYbaits targeting the P. vivax genome 
(version 3.0; MYcroarray: The Oligo Library Company, Ann Arbor, MI). Enriched genomes 
were sequenced on MiSeq 150 base-pair paired-end and HiSeq2500 125 base-pair paired-end 
chemistry (Illumina, San Diego, CA).  

Publicly Available Whole Genome Sequences 

We downloaded 684 publicly available Illumina paired-end P. vivax or P. vivax-like whole 
genome sequences from across the globe from the European Nucleotide Archive (Additional 
File).68–81 In addition, we downloaded Illumina single-end sequences for a single isolate that was 
recovered from a microscopy slide dating to Spain, 1944.82 P. cynomologi Illumina paired-end 
sequences were downloaded for both the M- and B-strains (Accessions: DRS000258, 
ERS001838, ERS023609).83,84 

Alignment, Quality Control, and Variant Discovery  

Reads were aligned to the P. vivax P01 reference genome 
(ftp://ftp.sanger.ac.uk/pub/project/pathogens/gff3/CURRENT/PvivaxP01.genome.fasta.gz) with 
`bwa mem` (v0.7) after undergoing adaptor-trimming with `cutadapt` (v1.16).85 Alignments were 
then deduplicated and mate-tags were added using `samblaster` (v0.1.24). The quality of the 
alignments were assessed using the Genome Analysis Toolkit (GATK) `CallableLoci` tool (v3.8-
0). We defined a “callable” loci as sites with greater than or equal to five high-quality reads (MQ 
>= 10, BQ >= 20). Upon inspection of the DRC isolates, we found that genomic coverage was 
sparse and only the mitochondria passed quality-thresholds. As a result, all further analyses were 
limited to the mitochondria. We then performed short variant discovery using GATK 
`HaplotypeCaller` followed by joint genotyping across all P. vivax samples with GATK 
`GenotypeGVCFs` (v4.0.3).86 

Variant Filtering and Consensus Haplotypes  

 Samples were excluded from downstream processing if less than 95% of their mitochondrial 
genome was callable (24/685 samples). Loci were then filtered using the GATK “hard filtering” 
approach, following previously established guidelines for both single nucleotide variants (SNVs) 
and insertion-deletions (INDELs).87 Specifically, we filtered loci with a quality-depth of less 
than two (QD < 2), position bias (ReadPosRankSum < -8.0 for SNV, ReadPosRankSum < -20.0 
for INDELs), strand bias (FS > 60 for SNV, FS > 200 for INDEL, SOR > 3 for SNV, SOR > 10 
for INDELs), and low mapping-quality (MQ < 35, MQSR < -12.5) using the GATK 
`VariantFiltration` and `SelectVariants` tools (v4.0.3).  



 

 

Following hard-filtering, we performed post-processing of loci and samples using the 
`vcfR` package and other custom scripts (GitHub: IDEELResearch/vcfRmanip).88 Passed loci 
were first limited to SNVs and sites that encoded a deletion as an alternative allele were excluded 
(i.e. `*` in the ALT category). Samples with more than 20% of SNV genotyped as heterozygous 
were excluded under an assumption of heteroplasmy. We then imputed the genotype of missing 
loci based on the sample’s within-country allele frequency. Two samples that were the only 
isolate from their country of origin, ERS347479 (Laos) and ERS040109 (Sri Lanka), were 
combined into Thailand and India for imputation, respectively. Following imputation, 
heterozygous sites were recoded as the major allele. Finally, we removed alleles within a country 

if the within-country allele frequency was less than . In a large population, this 
expression simplifies to removing alleles that are at less than 10% frequency within a country. 

From the resulting stringently filtered genotype calls, we created a consensus haplotype 
for each sample using the P01 mitochondrial sequence as a backbone using the `SeqinR` and 
`Biostrings` packages.89,90  

. Two samples -- both a part of the P. vivax-like Clade 2 from Gilabert et al. 2018 -- were 
found to have a higher-order of diversity than expected (ERS333076, ERS352725) and were 
subsequently excluded from further analysis.  

In total, 636/685 samples passed quality thresholds and were included in analyses. The 
Ebro-1944 sample was originally excluded at the callable loci stage (3,148/5,989 bases callable) 
but was later recovered for visual comparison (Supplementary Figure 13). To identify variants 
for the Ebro-1944 sample, we used the `mpileup` and `call` (consensus-caller) tools within the 
`bcftools` suite (N.B. joint genotyping was not performed).  

Separately, the P. cynomolgi samples also underwent variant discovery, joint genotyping, 
and hard-filtering as described above. The resulting hard-filtered variants among the three P. 
cynomolgi isolates were then processed by recoding heterozygous alleles as homozygous based 
on the major allele. Variants were then limited to SNVs and for each variant site, the most 
common allele among the three isolates was selected. As above, using these consensus SNVs, we 
created a P. cynomolgi consensus haplotype with a P. vivax P01 backbone.  
 



 

 

 
Supplementary Figure 13 - Consensus Haplotypes: Haplotypes are shown for each isolate that passed quality-
control (QC) threshold with the exception of the sample from Spain (ES) dating to 1944 in the Ebro region (Ebro-
1944). As described above, the Ebro-1944 sample did not initially pass QC thresholds but was later recovered for 
visual comparison. Abbreviations: DRC – Democratic Republic of the Congo, NHA – non-human apes, Brazil (BR), 
Colombia (CO), Mexico (MX), Peru (PE), Spain (ES), China (CN), Indonesia (ID), Cambodia (KH), Laos (LA), 
Myanmar (MM), Malaysia (MY), Papua New Guinea (PG), Thailand (TH), and Vietnam (VN). India (IN), Sri 
Lanka (LK), Ethiopia (ET), Madagascar (MG), Democratic Republic of the Congo (CD), Cameroon (CM), and 
Gabon (GA). 
 

Population Genetic Statistics and Phylogenetics  

Isolates were first divided into global regions using geographic K-means clustering. We selected 
K to be four based on minimizing the within-cluster sum of squares while avoiding overfitting. 
Samples from the DRC and NHA samples were also designated separate clusters (Supplementary 
Figure 14). 
 
 



 

 

 
Supplementary Figure 14 - Spatial Cross-Validation K-Clusters: Countries with P. vivax isolates included in the 
study were partitioned into K-groups for diversity and population differentiation measures. Based on the 
geographical K-means total within-cluster sum-of-squares, four sub-populations appeared to be a reasonable balance 
between minimizing the total within-cluster sum of squares while avoiding overfitting the data (left). The DRC 
samples and non-human ape samples were included as separate populations based on the overall study question and 
prior assumptions (right).  
 
 
 
To explore patterns of diversity among our global isolates, we first measured within-region 
nucleotide and haplotype diversity using the R-package, `PopGenome` (Supplementary Table 
9).91–94 We then evaluated the degree of population differentiation among parasite using 
measures of between-region nucleotide and haplotype diversity as well as pairwise measures of 
both between- and within-regions using Hudson’s Fst (Supplementary Table 10).91,92,95,96 
Population differentiation was also calculated using a Hamming’s distance between consensus 
haplotypes with the `ape` R-package.97 Haplotype differences were then mapped and visualized 
directly for the DRC (Figure 5). 
 
 
 
 
 



 

 

Population Nucleotide Diversity Haplotype Diversity 

Americas 0.70 0.38 

Africa 0 0 

Asia 1.80 0.77 

Oceania 1.65 0.68 

NHA 0.67 0.67 

DRC 0 0 

 
Supplementary Table 9 - Within Population Measures of Diversity: For each population, the within-population 
nucleotide diversity and haplotype diversity was evaluated. Overall, there was little within population diversity 
among samples from Africa as a whole. This lack of diversity may be an effect of the sample size.  
 
 

Pop1 Pop2 Between Haplotype 
Diversity 

Between Nucleotide 
Diversity Hudson’s Fst 

Africa Americas 0.97 1.14 0.81 

Asia Americas 0.70 1.50 0.18 

Asia Africa 0.97 1.74 0.61 

Oceania Americas 0.95 1.93 0.44 

Oceania Africa 1 2.26 0.66 

Oceania Asia 0.95 2.56 0.23 

NHA Americas 1 3.05 0.48 

NHA Africa 1 3.67 0.67 

NHA Asia 1 3.86 0.28 

NHA Oceania 1 4.25 0.32 

DRC Americas 1 1.39 0.81 

DRC Africa 1 2 1 

DRC Asia 1 2.19 0.62 

DRC Oceania 1 2.58 0.66 

DRC NHA 1 3.67 0.67 



 

 

Global Fst - - 0.81 

 
Supplementary Table 10 - Between Population Measures of Diversity and Population Structure: Pairwise 
comparisons were made for each population with respect to genetic diversity and population differentiation. Overall, 
the DRC differed from samples from the Americas the least. However, based on Hudson’s Fst this similarity was 
ancestral and did not represent recent mixing. Instead, the DRC samples appeared to be relatively isolated based on 
Hudson’s Fst. Overall lack of haplotype sharing is likely -- in part -- due to small sample sizes.  
 
 
 

Evolutionary relationships among the isolates were explored using phylogenetic analysis. 
We first identified the mutational model that best fit the observed data by comparing the Jukes-
Cantor versus the General Time Reversible substitution model (GTR + ) using maximum 
likelihood estimation with the `ape` and `phangorn` R-packages.97–100 For both substitution 
models, the tree topology, base frequencies, rate matrix, and gamma rate parameters were 
simultaneously optimized while finding the maximum likelihood. Model fit was compared using 
AIC, with the GTR model demonstrating a lower AIC and a better model fit. We then performed 
1,000 bootstrap iterations of our phylogenetic tree under the GTR model. The phylogenetic tree 
with the bootstrapped node support was then plotted using the R-package `ggtree`. Finally, we 
set P. cynomologi as the outgroup to root the tree.  
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