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SUPPLEMENTARY MATERIALS AND METHODS  

Inclusion and exclusion criteria 

The inclusion criteria of Jinling Hospital dataset and multi-center dataset were as follows: (1) 

lesions manifested as pulmonary nodules on CT scans; (2) nodules measured between 4 and 30 

mm in diameter on CT; (3) underwent surgical resection or biopsy within 15 days after CT 

scans. The exclusion criteria of Jinling Hospital dataset and multi-center dataset were as follows: 

(1) poor imaging quality due to motion artifact; (2) the nodule was pathologically proved 

metastatic tumor or intermediate tumor; (3) patients have accepted therapies before CT scans. 

 

NLST recruited individuals who were aged 55–74 years and at high-risk for lung cancer from 

33 medical centers in the United States for lung cancer screening1. The mPNs were proved 

pathologically while bPNs were proved pathologically or if no change was found over the 2-

year follow-up period. Images scanned by Siemens and with reconstruction thickness ≤ 2.5mm 

were included for further analysis.   

 

Pulmonary nodule detection network 

We developed a novel two-stage nodule detector network that integrated both image and feature 

pyramid for nodule detection. Firstly, we extended Feature Pyramid Network (FPN)2 to 3D as 

our nodule proposal network to avoid the detail information missing in upper layers of the 

network. Given one CT image as input, FPN generated rich semantics feature maps at different 

resolution by fusing both high and low features, enabling nodule detection in the proper 

resolution. Secondly, an image pyramid was designed for further false positive reduction. Due 

to lack of knowledge of object's size, traditional image pyramid consisted of a set of images 

with different scales3. In conclusion, we used FPN to produce rough size information of the 

proposal and detect the proposals in a proper resolution.  

 

Feature visualization of FGP-Net 

Given the black box property of deep learning, we further conducted a two-way feature 

interpretation to explore whether FGP-NET learned solid and effective features. Firstly, we 

applied T-distributed Stochastic Neighborhood Embedding (t-SNE), a popular nonlinear 

dimensionality reduction method for exploring and visualizing high-dimensional data, to 

visualize the global feature in 2 dimensions. The perplexity was set to 40, learning rate to 200 

and 1000 iterations.  

 

Secondly, we generated probability heat-map to visualize the local features. We extracted the 

feature maps just before DFL modules with two different scales as probability plot, and 

normalized them by using gamma transformation. The probability graph was then mapped to a 

color scheme, and overlaid with the original input images. 
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Comparison of HONORS with radiologists 

The FGPNet was analyzed at the HSpe point which valued the specificity as 99%. The 

radiologists rated the nodules from 1 to 4 (4 denotes the highest malignancy probability). The 

corresponding sets were defined as S1, S2, S3 and S4, respectively. When assessing the 

radiologists, S4 were defined as malignant and S1, S2, S3 were defined as benign. We assumed 

that the power of radiologists was 75% when they scored the nodule as S4 or S1. To keep 

assistance with FGPNet, we determine that only if the nodule was scored by over 75% of 

radiologists, it would be reclassified as S4 or S1, otherwise it would be reclassified as S2 or S3. 

After recalculating the score rated by the radiologists, we evaluated the performance of 

radiologists by sensitivity, specificity. 
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SUPPLEMENTARY TABLES 

Table S1: The scanning and reconstruction parameters of CT images from different centers.  

 

 

 

Site Jinling Hospital Wuxi People’s 

Hospital 

Southeast University 

Zhongda Hospital 

Second Affiliated 

Hospital of 

Nantong 

University 

NLST  

CT scanner SOMATOM Definition 

Flash/ SOMATOM 

Definition/ 

SOMATOM Emotion/ 

SOMATOM 

Perspective 

SOMATOM 

Definition/ 

SOMATOM 

Definition Flash 

Discovery CT750 HD/ 

SOMATOM Sensation 

64/ Revolution CT 

SOMATOM 

Definition Flash/ 

Sensation 16/ 

iCT 256/ 

Perspective/  

SOMATOM Force 

Brilliance 64 

Emotion 16/ 

Sensation 

16/ 

Sensation 4/ 

Volume 

Zoom 

Tube voltage, 

kVp 

120/130 120 120 100/110/120/130 120/130/140 

Tube current, 

mA  

62-663 42-682 56-569 127-680 37.5-160 

Detector 

collimation 

128*0.6/64*0.6/6*1.0 128*0.6/64*0.6 128*0.625/256*0.625 - - 

Gantry speed 0.5/0.6/0.8 0.5 - - - 

Slice 

thickness, mm 

1/1.25 1 0.75/1/1.25/1.5 1 1/2 

Kernel I70f/ I50s/ B50f/ B50s B70f LUNG/ STANDARD 

/B31f/ B80f 

C/ YB/ B70f/ B60f 

/B70s 

B50f/ B50s/ 

B60/ B60s/ 

B70f 

Matrix 512*512 512*512 512*512 512*512 - 

Abbreviations: CT, computed tomography; NLST, National Lung Cancer Screening Trial. 
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Table S2: The pathological types of nodules in training, validation and test sets. 
Pathological type Training set (n = 1606) Validation set (n = 200) JLH test set (n = 100) NLST test set (n =200) Multi-center set (n =242) 

Malignant      

Total, No (%) 845 (100) 86 (100) 75 (100) 22 (100) 187 (100) 

Adenocarcinoma 769 (91.0) 77 (89.5) 71 (94.7) 19 (86.4) 172 (92.0) 

Squamous cell carcinoma 47 (5.6) 6 (7.0) 2 (2.7) 1 (4.5) 8 (4.3) 

Other malignant typesa 29 (3.4) 3 (3.5) 2 (2.7) 2 (9.1) 7 (3.7) 

Benign      

Total, No (%) 761 (100) 114 (100) 25 (100) 178 (100) 55 (100) 

Chronic inflammation 83 (10.9) 3 (2.6) 3 (12.0) 0 (0.0) 14 (25.5) 

Granuloma 72 (9.5) 7 (6.1) 10 (40.0) 0 (0.0) 20 (36.4) 

Hamartoma 46 (6.0) 6 (5.3) 6 (24.0) 0 (0.0) 4 (7.3) 

Sclerosing pneumocytoma 14 (1.8) 2 (1.8) 0 (0.0) 0 (0.0) 7 (12.7) 

Inflammatory pseudotumor 22 (2.9) 2 (1.8) 3 (12.0) 0 (0.0) 0 (0.0) 

Fungus infection 13 (1.7) 2 (1.8) 0 (0.0) 0 (0.0) 4 (7.3) 

Atypical adenomatoid hyperplasia 15 (2.0) 0 (0.0) 1 (4.0) 0 (0.0) 0 (0.0) 

Other benign typesb 36 (4.7) 3 (2.6) 2 (8.0) 0 (0.0) 6 (10.9) 

Unknownc 460 (60.4) 89 (78.1) 0 (0.0) 178 (100.0) 0 (0.0) 

aOther malignant types were including small cell carcinoma, large cell neuroendocrine carcinoma, carcinoid tumor, adenosquamous carcinoma and acinar cell carcinoma. 

bOther benign types were including PEComa, adenoleiomyoma, tumorlet, lymphonodus and so on. 

cNLST did not provide the pathological results of the benign nodules, thus the benign nodules of the NLST dataset in the table were classified as unknown. 

Abbreviations: JLH, Jinling hospital; NLST, National Lung Cancer Screening Trial. 
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Table S3: The characteristics of nodules in training, validation and test sets. 

Characteristic Training set (n = 1606) Validation set (n =200) JLH test set (n =100) NLST test set (n =200) Multi_center set (n =242) 

 Benign Malignant p Benign Malignant p Benign Malignant p Benign Malignant p Benign Malignant p 

Longest axial 

diameter,  

Mean (SD), cm  

0.87 

(0.57) 

1.62 (0.65) < 

0.001a 

0.75 

(0.50) 

1.61 (0.57) <0.001 a 1.51 

(0.43) 

1.70 (0.52) 0.11 a 0.59 

(0.32) 

0.68 (0. 

35) 

0.241 a 1.85 

(0.75) 

2.06 (0.71) 0.07 a 

Attenuation 

pattern 

               

Total, No. (%) 761(100) 845(100)  114(100) 86(100)  25(100) 75(100)  178(100) 22(100)  55(100) 187(100)  

Non solid 156(20.5) 152(18.0) < 0.001 

b 

16(14.0) 10(11.6) < 0.001 

b 

1 (4.0.) 14 (18.7) < 0.001 

b 

41 (23.0) 0 (0.0) < 0.001 

b 

4(7.3) 39 (20.9) < 0.001 

b Part solid 51(6.7) 392(46.4) 6 (5.3) 41(47.7) 3 (12.0) 37 (49.3) 5 (2.8) 8 (36.4) 1(1.8) 46 (24.6) 

Solid  554(72.8) 301(35.6) 92(80.7) 35 (40.7) 21 (84.0) 24 (32.0) 132(74.2) 14(63.6) 50(90.9) 102 (54.5) 

Location                

Total, No. (%) 761(100) 845(100)  114(100) 86(100)  25(100) 75(100)  178(100) 22(100)  55 187  

RUL 196 (25.8) 309 (36.6) < 0.001 

b 

27 (23.7) 28 (32.6) 0.29 b 7 (28.0) 22 (29.3) 0.33 b 40 (22.5) 7 (31.8) 0.04 b 16(29.1) 76 (40.6) 0.09 b 

RML 85(11.2) 59(7.0) 11 (9.6) 4 (4.7) 1 (4.0) 6 (8.0) 20 (11.2) 0 (0.0) 4(7.3) 11 (5.9) 

RLL 169(22.2) 143(16.9) 23(20.2) 22 (25.6) 4 (16.0) 11(14.7) 42(23.6) 5 (22.7) 14 (25.5) 25 (13.4) 

LUL 172 (22.6) 213 (25.2) 28(24.6) 19 (22.1) 4 (16.0) 23 (30.7) 29(16.3) 8 (36.4) 10(18.2) 51(27.3) 

LLL 139(18.3) 121(14.3) 25(21.9) 13(15.1) 9 (36.0) 13 (17.3) 47 (26.4) 2 (9.1) 11 (20.0) 24(12.8) 

a This P value was calculated using independent-sample t test or Mann-Whitney U test. 

b This P value was calculated using Chi-Squared test or Fisher's exact test. 

Abbreviations: JLH, Jinling hospital; LLL, left lower lung; LUL, left upper lung; NLST, National Lung Cancer Screening Trial; RLL, right lower lung; RML, right middle lung; RUL, right upper lung; SD, standard deviation. 
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Table S4: The average performance of 126 radiologists and three groups with 

different experience.  

Group Sensitivity Specificity Accuracy PPV NPV 

Average radiologist 72.2% 71.7% 72.1% 88.8% 50.2% 

Resident 71.2% 68.5% 70.5% 87.5% 48.3% 

Fellow 71.4% 73.1% 71.9% 89.1% 49.6% 

Consultant 74.0% 73.4% 73.8% 89.7% 52.7% 

Abbreviations: NPV, negative predictive value; PPV, positive predictive value. 

 

Table S5: The performance of the HONORS in the three-step way in the screened 

nodules.  

Scenario  Dataset Operating 

point  
AUC Sensitivity Specificity NPV 

Screen Step-1 NLST (n=200) HSen  0.963 95.5% 72.5% 99.2% 
Step-2 NLST_ subset 

(n=70) 
Hspe 0.946 33.3% 95.9% 77.0% 

Step-3 NLST_ subset 

(n=61) 
Youden 0.965 100.0% 76.6% 100.0% 

Abbreviations: AUC, area under the curve; Hsen, high sensitivity; Hspe, high specificity; NLST, 

National Lung Cancer Screening Trial; NPV, negative predictive value. 

 

 

Table S6: The performance of the HONORS in the three-step way in the incidentally 

detected nodules.   

Scenario  Dataset Operating 

point  

AUC Sensitivity Specificity PPV 

Diagnosis Step-1 Multi (n=242) Hsen 0.855 100.0% 5.5% 78.2% 

Step-2 Multi _ subset
 
 

(n=239) 

Hspe 0.846 41.7% 94.2% 96.3% 

Step-3 Multi_ subset
 
 

(n=158) 

Youden 0.797 93.6% 46.9% 79.7% 

Abbreviations: AUC, area under the curve; Hsen, high sensitivity; Hspe, high specificity; PPV, 

positive predictive value. 
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SUPPLEMENTARY FIGURES 

 

Figure S1: Plot showing performance in the training set and validation set. Plot 

showing the performance of pulmonary nodule risk stratification on CT images in the 

training and validation set using FGP-NET. a) AUC is plotted against the training step, 

and b) cross-entropy loss is plotted against the training step. The validation set AUC 

and loss show good performance. For AUC, the validation set curve converges to 95.8% 

(97.7% for the training process); for the loss function, the validation set curve 

approaches 0·49 (0·42 for the training process). 
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Figure S2: Structure of the three-step of HONORS. An additional three-step way to 

realize the HONORS. Regardless of the source of nodules, we proposed a three step to 

stratify them. The first step is the blue translucent paths which focus on sensitivity to 

stratify the benign nodules with high precision. The second step is the yellow 

translucent paths which focus on specificity to stratify the lung cancer with high 

precision. Both of the two steps are “Human Free”. Further, under a Youden point in 

the third step, the remaining ‘ambiguous nodules’ are differentiated into benign and 

malignant ones by FGP-NET but require final confirmation by physicians (radiologists), 

which indicated a “Human-Machine Coupling Solution” mode. 
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Figure S3: Nodules with inconsistent diagnosis by the radiologist’ majority opinion 

and FGP-NET. A total of unique 18 inconsistent nodules were misdiagnosed by 

radiologists’ majority opinion and FGP-NET, accounting for 9 each. Typical cases of 

them are presented. a-e) nodules misdiagnosed by radiologists. All of them were 

pathologically proved to be adenocarcinoma. f-j) nodules misdiagnosed by FGP-NET. 

f) chronic inflammation. g) inflammatory pseudotumor. h-j) granuloma. Most of them 

manifested as solid nodules on CT. 
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Figure S4: Performance of HONORS in diagnostic scenario using JLH validation set. a) 

Each line represents the relative malignant score (y-axis) of one nodule in a) and x-axis 

represents the nodule index, and nodules with scores greater than 0.999965 were 

directly considered as malignant nodules. b) Each line represents the corresponding 

malignant score that extracted by Youden point of 0.384642. Nodules with scores 

greater than zero were predicted as malignant nodules and benign ones for the rest. 

c) Corresponding statistics used to evaluate the performance of HONORS under 

diagnostic scenario, including AUC, sensitivity, specificity and PPV. 
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Figure S5: Confusion matrix showing the frequency of FGP-NET prediction with 

respect to the 126 radiologists on JLH dataset. The ground truth of nodules in left 

matrix was benign and the ground truth of nodules in right matrix was malignant. FGP-

NET diagnosed 30 nodules as lung cancer and made no mistake; while radiologists 

diagnosed 12 nodules as lung cancer with one out of them misdiagnosed.  
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