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A. Description of the extended model 

We extended our mechanistic Bayesian model to take into account information present in SWET 

dataset that were not available in Flares dataset, notably to investigate the effects of potential risk 

factors on severity scores and heterogeneity in treatment responsiveness.  

The model is described by an exponentially modified Gaussian distribution, 

𝑺𝑘(𝑡 + 1)~𝑁(𝑆̂𝑘(𝑡 + 1), 𝜎𝑆
2), with 

𝑆̂𝑘(𝑡 + 1) = 𝑤𝑆
(𝑘)

𝑺𝑘(𝑡) + 𝑇̂𝑘(𝑡) + 𝑤𝐻𝑜𝑚𝑒𝑯𝒐𝒎𝒆(𝑘)(𝑡) + 𝐷𝑒𝑚𝑘̂ + 𝑅𝑘(𝑡) + 𝑏𝑆, 

where 𝑇̂𝑘(𝑡), 𝑯𝒐𝒎𝒆(𝑘)(𝑡) and 𝐷𝑒𝑚𝑘̂ represent the contribution of treatment, whether the patient 

“slept at home” and the contribution of demographics factors, respectively. 

Demographics factors include the presence of filaggrin mutation (𝑭𝑳𝑮(𝑘)), sex (𝑺𝒆𝒙(𝑘)), age 

(𝑨𝒈𝒆(𝑘)), and “white” ethnicity (𝑾𝒉𝒊𝒕𝒆(𝑘)): 

𝐷𝑒𝑚𝑘̂ = 𝑤𝐹𝐿𝐺𝑭𝑳𝑮(𝑘) + 𝑤𝑆𝑒𝑥𝑺𝒆𝒙(𝑘) + 𝑤𝐴𝑔𝑒𝑨𝒈𝒆(𝑘) + 𝑤𝑊ℎ𝑖𝑡𝑒𝑾𝒉𝒊𝒕𝒆(𝑘). 

The contribution of treatment, 𝑇̂𝑘(𝑡), is summarised in Figure S5 and is modelled by a linear 

combination of the treatment usage,  

𝑇̂𝑘(𝑡) = 𝑤𝑆𝑈
(𝑘)

𝑺𝑼𝑘(𝑡) + 𝑤𝐶𝑆
(𝑘)

𝑪𝑺(𝑡) + 𝑤𝐶𝐼
(𝑘)

𝑪𝑰𝑘(𝑡), 

for step-up (𝑺𝑼𝑘(𝑡)), topical steroid (𝑪𝑺𝑘(𝑡)) and calcineurin inhibitors (𝑪𝑰𝑘(𝑡)). We assumed a 

hierarchical prior for 𝑤𝑆𝑈
(𝑘)

 ~ 𝑁(𝜇𝑆𝑈, 𝜎𝑆𝑈
2 ), and expressed 𝑤𝐶𝑆

(𝑘)
 and 𝑤𝐶𝐼

(𝑘)
 as a function of the daily 

quantity of treatment of different potencies used: 

𝑤𝑇
(𝑘)

= ∑ 𝑤𝑇,𝑃 𝑞̂𝑇,𝑃
(𝑘)

+  𝑏𝑇
(𝑘)

𝑃 ,    𝑇 ∈ {𝐶𝑆, 𝐶𝐼} and 𝑃 ∈ {Mild, Moderate, Potent, Very Potent}, 

where 

 𝑞̂𝑇,𝑃
(𝑘)

 is the estimated daily quantity of treatment 𝑇 of potency 𝑃 used, 

 𝑤𝑇,𝑃 is the relative contribution of treatment 𝑇 of potency 𝑃 on the severity score, and 

 𝑏𝑇
(𝑘)

 is the intrinsic responsiveness of the 𝑘-th patient to treatment 𝑇. We assumed a 

hierarchical prior for 𝑏𝑇
(𝑘)

 ~ 𝑁(𝜇𝑇 , 𝜎𝑇
2). 

The daily quantity of treatment used by the k-th patient, 𝑞̂𝑇,𝑃
(𝑘)

, is estimated from the reported total 

quantity of treatment used 𝑸𝑇,𝑃
(𝑘)

. If 𝑸𝑇,𝑃
(𝑘)

= 0, we assume 𝑞̂𝑇,𝑃
(𝑘)

= 𝑸𝑇,𝑃
(𝑘)

= 0. Otherwise, we estimate 

𝑞̂𝑇,𝑃
(𝑘)

 by 𝑞̂𝑇,𝑃
(𝑘)

=
𝑄̂𝑇,𝑃

(𝑘)

𝑁𝑇,𝑃
(𝑘), where 𝑄̂𝑇,𝑃

(𝑘)
 is the total quantity of treatment used and 𝑵𝑇,𝑃

(𝑘)
 is the number of 

treatment applications estimated by a multiplicative error model, 

log( 𝑄̂𝑇,𝑃
(𝑘)

)  ~ 𝑁 (log (𝑸𝑇,𝑃
(𝑘)

),
𝜎𝑄

2

𝑪𝒐𝒏𝒇(𝑘)), where 𝑸𝑇,𝑃
(𝑘)

 is the quantity reported by the k-th patient with 

confidence 𝑪𝒐𝒏𝒇(𝑘) ∈ {1 = not all sure , 2 = not sure, 3 = sure, 4 = very sure}.  
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B. Missing value imputation 

As is often the case with real-world data, especially clinical data, Flares and SWET datasets contains 

missing values in the bother score (38.8% and 1.9%, respectively). Ignoring missing values, such as 

removing them entirely, could result in a dramatic reduction of the available data and information, 

especially when dealing with time-series where the observations are related. Appropriate imputation 

of missing values is important to avoid making biased prediction. Simple imputation methods, such 

as imputation by a default value or the mean of the observations, are often implemented. However, 

they do not fit well in a Bayesian framework where uncertainties in any unknowns are modelled. 

In this study, we treated missing values as unknown (parameters) to be imputed by the Bayesian 

model in a semi-supervised setting. We constructed a vector 𝑆𝑘 representing the time-series of the k-

th patient by concatenating both data (observed score) and parameters (missing score). Therefore, 

priors for missing values follow the same distribution as the likelihood when values are observed. 

Here we assumed the missing scores were missing completely at random. 

We did not let the model impute the missing values for the other covariates (treatment and risk factors 

for the extended model) to avoid reverse causality. For instance, if we let the model impute the 

missing value for treatment data, it could determine the value a posteriori based on the knowledge 

that the severity is decreasing. Instead, we made a conservative assumption to replace missing values 

for 𝑻𝑘(𝑡) or 𝑪𝑺𝑘(𝑡), 𝑪𝑰𝑘(𝑡), 𝑺𝑼𝑘(𝑡) with 0 (no use of treatment). As a result, the effects of treatment 

on future severity scores are more likely to be underestimated than overestimated. Similarly, missing 

𝑪𝒐𝒏𝒇(𝑘) (2/327 patients) were imputed by “not at all sure”, missing 𝑭𝑳𝑮(𝑘) (22/327 patients) were 

imputed by 0 (absence of mutation), missing 𝑾𝒉𝒊𝒕𝒆(𝑘) (2/327 patients) were imputed by 0 (non-

white or do not wish to declare) and missing 𝑯𝒐𝒎𝒆(𝑘)(𝑡) were imputed by 1 (“slept at home”, the 

most common answer). 

We assumed 𝑻𝑘(𝑡) = 0 during testing (where 𝑡 represents the future and is therefore missing) to 

avoid making biased predictions based on the knowledge about the future use of treatment. 

 

C. Choice of priors 

Priors are inherent to a Bayesian model, as they correspond to the initial distributions that are updated 

upon observations of data to form the posterior distribution. 

We chose our priors to be weakly informative. Weakly informative priors are priors designed to rule 

out unreasonable parameter values (e.g. noise parameters outside the range of the scores) without 

excluding any value that could make sense. The influence of weakly informative priors is expected 

to disappear with enough data. We confirmed that our priors were reasonable by conducting prior 

predictive checks and that our results were not sensitive to the choice of realistic priors. 

We set hierarchical (population) priors for patient-dependent treatment parameters by 

𝑤𝑇
(𝑘)

 ~ 𝑁(𝜇𝑇 , 𝜎𝑇
2), 𝑤𝑆𝑈

(𝑘)
~ 𝑁(𝜇𝑆𝑈, 𝜎𝑆𝑈

2 ), 𝑏𝐶𝑆
(𝑘)

 ~ 𝑁(𝜇𝐶𝑆, 𝜎𝐶𝑆
2 ) and 𝑏𝐶𝐼

(𝑘)
 ~ 𝑁(𝜇𝐶𝐼 , 𝜎𝐶𝐼

2 ), where 𝜇 and 𝜎2 

are the mean and variance of the Gaussian distribution, respectively. We assumed a uniform prior for 

𝑤𝑆
(𝑘)

~𝑈(0,1). We did not define a hierarchical prior for 𝑤𝑆
(𝑘)

 for computational reasons as several 

parametrisations (e.g. Beta distribution, non-centred normal distribution with a logit link) did not 

converge after two days of sampling with a high-performance computing cluster. Using a hierarchical 

or a uniform prior should not result in a noticeable difference in the posterior for 𝑤𝑆
(𝑘)

 since we can 
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expect the influence of the prior to be minimal for long enough time-series (more than 100 days long) 

used in this study. 

We chose 𝑏𝑆 ~ 𝑇2(0, 1), 𝜇𝑇  ~ 𝑇2(0, 0.5), 𝜎𝑇 ~ 𝑇2
+(0, 0.25) and 𝜎𝑃 ~ 𝑇2

+(0, 0.2), where 𝑇𝜈(𝜇, 𝜎) 

represents the Student’s t-distribution with 𝜈 degrees of freedom, centered around 𝜇 with scale 𝜎, and 

the superscript + denotes half (truncated) distributions defined on positive reals. 

We also chose 𝜎𝑆 ~ 𝐺𝑎𝑚𝑚𝑎(2.6, 3.1) to ensure that 98% of the mass is between 0.2 and 2.5. Indeed, 

𝜎𝑆 < 0.2 and 𝜎𝑆 > 2.5 are unlikely due to discretisation (e.g. if 3.4 is discretised as 3, the error is 0.4) 

and the score range (0-10), respectively. 

For the extended model, we chose 𝑤𝐹𝐿𝐺 , 𝑤𝑆𝑒𝑥 , 𝑤𝑊ℎ𝑖𝑡𝑒 , 𝑤𝐻𝑜𝑚𝑒 ~ 𝑇2(0, 0.5), 𝑤𝐴𝑔𝑒 ~ 𝑇2(0, 0.1), 

 𝜇𝑆𝑈, 𝜇𝐶𝑆, 𝜇𝐶𝐼 ∼ 𝑇2(0, 0.5), 𝜎𝑆𝑈 , 𝜎𝐶𝑆, 𝜎𝐶𝐼 ~ 𝑇2
+(0, 0.25), 𝜎𝑄 ~ 𝑁+(0, 0.252), 

𝑤𝐶𝑆, Mild, 𝑤𝐶𝑆, Moderate, 𝑤𝐶𝑆, Potent, 𝑤𝐶𝑆, Very Potent ∼ 𝑁(0, 0.52) and 𝑤𝐶𝐼, Mild, 𝑤𝐶𝐼, Moderate ~ 𝑁(0, 0.52). 

 

D. Inference method 

This section provides some details of the inference method used in this paper.  

A Bayesian model is fully determined by its posterior distribution 𝑝(𝜃|𝑥), where 𝜃 represents the 

model parameters (including missing values) and 𝑥 the observed variables (𝑺𝑘(𝑡) and 𝑻𝑘(𝑡)). 

In most cases, including this study, it is not possible to compute 𝑝(𝜃|𝑥) analytically using Bayes’ 

theorem. Instead, Markov chain Monte-Carlo (MCMC) methods, like the Hamiltonian Monte-Carlo 

algorithm used in this paper, aim to sample the posterior distribution using Markov chains whose 

stationary distribution is 𝑝(𝜃|𝑥). The first samples from the chains are discarded (burn-in or warm-

up) to limit the influence of initial conditions. 

When we use MCMC methods, it is not possible to know whether a Markov chain has converged. 

However, we can look for signs of a lack of convergence. Not observing any issues (such as numerical 

errors, chains sampling different areas in the parameter space or not sampling the parameter space at 

all) while running Markov chains for a long time is a good indicator for potential convergence. 

Inspection of trace plots (time series plots of MCMC draws) can assess the mixing of the chains and 

whether the chains explore the posterior distribution well. It is also possible to run multiple chains in 

parallel from different initial values and check whether these chains sample the same distribution with 

a Gelman-Rubin convergence diagnostic 𝑅̂ smaller than 1.1 (Tables S1 and S2). 

The precision of parameter estimates can be assessed with the effective sample size 𝑛eff (also shown 

in Tables S1 and S2). Given a parameter 𝜃 whose distributions is estimated by 𝑁 independent and 

identically distributed samples, the sample mean 𝜃̅ is given by 𝜃̅ ~ 𝑁 (𝜇𝜃, (
𝜎𝜃

√𝑛
)

2

), according to the 

central limit theorem, where 𝜇𝜃 and 𝜎𝜃 are the true mean and the standard deviation of 𝜃, respectively. 

Therefore, the resolution of 𝜃̅ is proportional to 
1

√𝑛
, suggesting that 100 times more samples are 

required if one more digit of precision is needed for 𝜇𝜃. In MCMC, the samples are autocorrelated, 

and thus the error is proportional to 
1

√𝑛eff
,  rather than 

1

√𝑛
, where 𝑛eff is the effective sample size. 
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E. Multi-category calibration 

We applied calibration during the validation process to correct for potential mismatch between 

predicted probabilities and observed frequency (e.g. when a 50% forecast does not happen 50% of 

the time). At each week W, 

 predictions from the previous week (W-1) were compared to the outcomes of week W to 

update the calibration model, and 

 the model was trained with the data up to week W, and uncalibrated predictions for week W+1 

were generated and fed to the calibration model to return the calibrated predictions. 

Designing a calibration model is relatively straightforward for a binary classification task (with a 

positive and negative class), by adding more probabilities to the positive outcome while removing 

the same amount for the negative outcome. However, this study deals with a multi-category forecast 

with 11 categories (corresponding to the severity score of 0 to 10), and no gold standard for calibrating 

a multi-category forecast has been proposed. 

We therefore proposed a multi-category calibration method that applies binary classification followed 

by the coupling of the adjusted probabilities, using pairwise “one-against-all” isotonic regressions. 

Firstly, we decomposed the multi-category problem in “one-against-all” binary problems: “bother =

0 vs bother ≠ 0”, “bother = 1 vs bother ≠ 1”, etc. Then we calibrated each of these binary 

classification problems with isotonic regressions, a non-parametric approach to fit monotonically 

increasing curves. Finally, we used pairwise coupling to combine the probabilities of the binary 

forecasts to derive the calibrated multi-category forecast, 𝑓𝑖, for the i-th category (i=0, …, 10) by 

𝑓𝑖 = 𝑓𝑖 + 𝛼 𝛥𝑖  ∙ [|𝛥𝑖| > 0.01], 

where 𝑓𝑖 is the non-calibrated multi-category forecast and 𝛥𝑖 = 𝑝𝑖 − 𝑓𝑖 is the adjustment term, which 

corresponds to the difference (to be adjusted) between the calibrated forecast 𝑝𝑖 and 𝑓𝑖 in the binary 

problem “bother = 𝑖 vs bother ≠ 𝑖”. We chose 𝛼 = 0.8 to scale down the adjustment to prevent 

overfitting and included the Iverson bracket [|𝛥𝑖| > 0.01] = {
0 if |Δ𝑖| ≤  0.01

1 otherwise
 to keep the original 

forecast if the adjustment was small (|Δ𝑖| ≤  0.01). The 𝑓𝑖’s were normalised to sum to 1. The 

calibration procedure could be applied iteratively, but we found that one pass was enough to calibrate 

the forecasts effectively. 

 

F. Performance metrics 

The accuracy of probabilistic models is assessed by calibration and discrimination. Calibration 

evaluates whether the probability estimates are accurate (e.g. whether an event with a probability of 

50% occurs 50% of the time), while discrimination evaluates the ability to differentiate observations 

with different outcomes (e.g. whether someone with a disease is assigned a higher probability of 

having a disease than someone without a disease). In this study, we assessed model calibration 

(whether forecast probabilities are accurate) by a normalised quadratic scoring rule (ranked 

probability skill score, RPSS) and discrimination (whether the ranking of probabilities is accurate) by 

the area under the receiving operating characteristic (AUROC). These metrics are appropriate for 

evaluating forecasts of categorical ordinal data. 
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F.1 RPSS for calibration 

We qualitatively assessed calibration of our model with calibration curves that plot forecast 

probabilities against observed frequencies (Fig 3C-D), and also quantified calibration with a scoring 

rule using RPSS. 

The most common quadratic scoring rule is the mean square error, aka the Brier score (BS), which is 

defined as the mean square difference between the predicted probabilities and the actual outcome. A 

perfectly calibrated classifier has a BS of 0 by definition. For a multi-category outcome, the Brier 

score is an average of 𝐵𝑆(𝑡) = ∑ (𝑓𝑡,𝑖 − 𝑜𝑡,𝑖)
2𝑅

𝑖=1  at each prediction 𝑡 over N predictions, and is 

described by  

𝐵𝑆 =
1

𝑁
∑ ∑ (𝑓𝑡,𝑖 − 𝑜𝑡,𝑖)

2𝑅
𝑖=1

𝑁
𝑡=1 , 

where N is the number of predictions, 𝑅 is the number of categories, 𝑓𝑡,𝑖 is the forecast probability to 

predict the 𝑖-th category by the 𝑡-th prediction, and 𝑜𝑡,𝑖 ∈ {0,1} describes whether the 𝑡-th prediction 

is in the 𝑖-th category. 

The Brier score is defined for multi-category forecasts but is not suited well for ordinal outcomes, 

such as the severity score from 0 to 10 in this study. The ranked probability score (RPS) extends the 

Brier score to ordinal outcomes by computing the mean square difference between the cumulative 

forecast distribution 𝐹𝑡(𝑖) = ∑ 𝑓𝑡,𝑗
𝑖
𝑗=1  and the cumulative outcome distribution 𝑂𝑡(𝑖) = ∑ 𝑜𝑡,𝑗

𝑖
𝑗=1 , and 

is defined by 

𝑅𝑃𝑆 =
1

𝑁
∑

1

𝑅−1
∑ (𝐹𝑡(𝑖) − 𝑂𝑡(𝑖))

2𝑅
𝑖=1

𝑁
𝑡=1 . 

Given that we can rewrite 𝑅𝑃𝑆 =
1

𝑅−1
∑ 𝐵𝑆(outcome ≤ 𝑖)𝑅

𝑖=1  with 𝐵𝑆(outcome ≤ 𝑖) =

1

𝑁
∑ (𝐹𝑡(𝑖) − 𝑂𝑡(𝑖))

2𝑁
𝑡=1 , RPS can be seen as the averaged Brier score of the binary classification 

problems, “𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≤ 𝑖” versus “𝑜𝑢𝑡𝑐𝑜𝑚𝑒 > 𝑖”. 

To provide a more interpretable metric than the RPS, we used the ranked probability skill score, 

𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆

𝑅𝑃𝑆0
, which quantifies the improvement of accuracy of the probabilistic forecast by the 

proposed model from that of the baseline forecast, 𝑅𝑃𝑆0. 𝑅𝑃𝑆𝑆 =  0 represents a prediction not 

better than the baseline forecast, and 𝑅𝑃𝑆𝑆 = 1 is a perfect prediction. We chose the baseline RPS to 

be the expected RPS for a chance-level forecast, i.e. 𝑅𝑃𝑆0 ≈ 0.182. A chance-level forecast has the 

advantage of being constant over time and reflects the situation when no data is available to train a 

model (e.g. if we are to make predictions the first day a patient enters a study). While naïve, we 

consider a chance-level forecast to be an appropriate upper bound for the RPS. 

 

F.2 AUROC for discrimination 

We assessed discrimination by computing the area under the receiving operating characteristic 

(AUROC). The AUROC in a binary classification task (negative and positive classes) can be 

interpreted as the probability that a random positive instance is assigned to a higher probability than 

a random negative instance. A multi-category AUROC can be derived by averaging the AUROC 

from a set of “one-vs-all” binary classification problems. We derived an ordinal AUROC as the 

average AUROC of the binary classification problems “Bother ≤ 𝑖” versus “Bother > 𝑖” for 𝑖 ∈

0 … 9. 
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F.3 Learning curves 

To investigate whether the model learns/improves its performance as more data comes in, we plotted 

the evolution of the RPSS as a function of the training iterations of the forward chaining (Fig 3a). 

However, the RPSS was not computed on the same population at each iteration due to missing 

observations. These subpopulations were not representative of the entire population as patients with 

controlled AD tended to drop out earlier in clinical trials than patients with uncontrolled AD. The fact 

that the patients with controlled AD are easier to predict (low noise, high RPSS) than patients with 

uncontrolled AD (high noise, low RPSS) resulted in Simpson’s paradox, where the RPSS averaged 

across all the available patients hit a maximum then decrease, although each individual RPSS may 

increase (Fig S10). 

We therefore controlled for the patient-dependence as well as other factors by modelling the RPSS at 

the observation-level and used the mean fit as an unbiased estimate of the RPSS averaged across 

observations. We used a Generative Additive Model (GAM) with cubic splines to achieve a flexible 

fit to the evolution of the RPSS while avoid overfitting. The performance for the first training iteration 

(𝑖 = 0) was estimated separately as it corresponds to a uniform forecast. We also controlled for the 

prediction horizon, since predictions at each iteration were made for the entire week but the 

performance was expected to decrease as the prediction horizon increases. In addition, we introduced 

a mixed effect on the intercept to control for patient-dependence. The model was fitted using the 

gamm4 package in R to 𝑅𝑃𝑆𝑆 ~ [𝑖 = 0] + [𝑖 > 0]: 𝑡 + [𝑖 > 0]: 𝑠(𝑖) + (1|𝑃𝑎𝑡𝑖𝑒𝑛𝑡), where 

 [.] is the Iverson bracket: [𝐴] = 1 if A is true and 0 otherwise. 

 the coefficient for [𝑖 = 0] corresponds to the RPSS estimate for 𝑖 = 0, 

 [𝑖 > 0]: 𝑡 represents the interaction between [𝑖 > 0] (1 if 𝑖 > 0, 0 otherwise) and the 

prediction horizon 𝑡 (the corresponding coefficients measures how much RPSS is lost as 𝑡 

increases), 

 𝑠(𝑖) represents a cubic spline on 𝑖, which can be written as a linear combination of piecewise 

cubic polynomial basis function 𝑏𝑗(𝑖) and coefficients 𝛽𝑗, 𝛽1 𝑏1(𝑖) + 𝛽2 𝑏2(𝑖) + ⋯ +

𝛽𝑙 𝑏𝑙(𝑖) . This term models the evolution of RPSS as more data comes in, and 

 (1|𝑃𝑎𝑡𝑖𝑒𝑛𝑡) represents a random effect on the intercept for different patients. 

The RPSS fit for one-step-ahead prediction is shown in Fig 3a. We estimated the calibration loss to 

be 0.9% in Flares and 3.5% in SWET when the prediction horizon (𝑡) is increased by one day (e.g. 

one day forecast versus two days forecasts). 

Unlike the RPSS, it is not possible to control for the fact that the AUROC at different iterations may 

be computed from different subpopulations of patients, since the AUROC cannot be computed at the 

observation-level. We can nonetheless mitigate Simpson’s paradox in the evolution of AUROC by 

weighting observations with the population size used to derive each AUROC. We implemented a 

Beta regression with a logit link for the mean and a log link for the sample size, since the AUROC is 

a probability. We used B-splines with 5 degree of freedoms to model the evolution of the AUROC 

and controlled for the prediction horizon. The model was fitted for 𝑖 > 0 (since for a uniform forecast, 

𝐴𝑈𝑅𝑂𝐶 = 0.5) using the betareg and splines packages in R, with 𝐴𝑈𝑅𝑂𝐶 ~ 𝑡 + 𝑠(𝑖). 

The AUROC was fitted for prediction one-step-ahead (Fig 3b). We also estimated the odd ratio for 

the discrimination loss to be 0.96 in Flares dataset and 0.85 in SWET dataset when the prediction 

horizon (𝑡) is increased by one day (e.g. one day forecast versus two days forecasts, respectively). 
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G. Comparison of our model with the null model 

We compared the predictive performance metrics for model calibration and discrimination between 

our model and a null model. As the null model, we used a Gaussian random walk 

model 𝑺𝑘(𝑡 + 1)~ 𝑁(𝑺𝑘(𝑡), 𝜎S
2), where 𝜎S

2 is the variance of the random walk. Note that 𝜎S
2 here is 

different from the variance of the Gaussian component of the exponentially modified Gaussian 

distribution of our model. 

The null model had a lower performance overall, although the difference is less striking for the model 

fitted to SWET dataset than that to Flares dataset. The similar performance between the null model 

and our model for SWET dataset could be explained by the fact that 58% of the patients in SWET 

dataset follows a “quasi” random-walk behaviour (characterised by a strong autocorrelation, e.g. 

𝑤𝑆
(𝑘)

> 0.75 and mild skewness, e.g. 𝑃(𝑡) < 1), compared to only 17% of the patients in Flares 

dataset. It could also be explained by the fact that the relative benefit of using our model, compared 

to a random walk model, for one-day-ahead forecasts is less pronounced when working with a 

complete dataset (e.g. SWET dataset) than when working with a dataset with many missing values 

(e.g. Flares dataset).  

However, the null model did not “learn” the dynamic patterns of the severity scores from the data and 

merely reacted to distributional changes in the data, as indicated by heteroscedasticity of the model 

(the variance that changes with time) (Fig S12). Therefore, the random walk model is not 

generalisable to unseen data even though it has only one patient-nonspecific parameter. Our model, 

in comparison, is statistically valid, interpretable and flexible enough to capture different trajectory 

patterns, including random walks. 

For all these reasons, we believe our model is superior to the Gaussian random walk model. 
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Table S1: Posterior summary statistics for the population-level parameters of the models trained on 

Flares and SWET dataset. The potential scale reduction factor 𝑅̂ indicates whether different MCMC 

chains are sampling the same distribution, an indicator of convergence. 𝑅̂ < 1.1 suggests no evidence 

for an absence of convergence. The effective sample size 𝑛eff is an estimate of the number of 

independent draws from the chains. Higher 𝑛eff corresponds to more precise estimates (smaller 

standard error of the mean). 

Parameter Interpretation Dataset Mean 95% CI 𝑹̂ 𝒏𝐞𝐟𝐟 SE 

𝝈𝑺 
Standard deviation of the 

evolution of S (severity) 

Flares 0.651 [0.616, 0.688] 1.033 199 0.001 

SWET 0.640 [0.631, 0.649] 1.011 1029 0.000 

𝝈𝑷 

Standard deviation of the 

relative evolution of P (flare 

triggers) 

Flares 0.051 [0.042, 0.061] 1.004 999 0.000 

SWET 0.076 [0.068, 0.084] 1.004 1389 0.000 

𝝁𝑻 
Population mean of the  

responsiveness to treatment 

Flares -0.200 [-0.330, -0.070] 1.001 2904 0.001 

SWET -0.196 [-0.245, -0.146] 1.001 3510 0.000 

𝝈𝑻 

Population standard 

deviation of the 

responsiveness to treatment 

Flares 0.373 [0.263, 0.507] 1.002 2077 0.001 

SWET 0.369 [0.321, 0.423] 1.002 2594 0.001 

𝒃𝑺 
Intercept of the evolution of 

S  

Flares 0.100 [0.049, 0.151] 1.015 468 0.001 

SWET 0.294 [0.267, 0.321] 1.004 2348 0.000 

 

 

Table S2: Posterior summary statistics for the population-level parameters of the extended model. 
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Figure S1: Example data from SWET dataset. Discontinuities represent missing values. Data from 

Flares dataset is similar but with only bother score and step-up, and with more missing values. 

 

 

Figure S2: Illustration of the forward chaining validation 

procedure. The model was trained with the first week’s data 

and tested on the second week’s data, then re-trained on the 

first two weeks’ data and tested on the third week’s data, and 

so on, up to week 39 and 16 for Flares and SWET datasets, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Missing bother scores in 

Flares dataset. Black and orange 

indicate observed and missing scores, 

respectively. The x-axis indicates the 

date of the measurement. 
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Figure S4: Missing bother scores in SWET dataset. Black and orange indicate observed and missing 

scores, respectively. The x-axis indicates the date of the measurement. 
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Figure S5: A factor graph that represents the structure of the 

term corresponding to contribution of treatment in the extended 

model, 𝑇̂𝑘(𝑡) = 𝑤𝑆𝑈
(𝑘)

𝑺𝑼𝑘(𝑡) + 𝑤𝐶𝑆
(𝑘)

𝑪𝑺(𝑡) + 𝑤𝐶𝐼
(𝑘)

𝑪𝑰𝑘(𝑡) 

(Supplementary A). The grey and white circles represent the 

observed and latent variables, respectively. The variables are 

connected to factors (square nodes) that represent the 

operations or conditional probability distributions. For 

instance, 𝑏𝑇
(𝑘)

 is normally distributed with mean 𝜇𝑇 and 

variance 𝜎𝑇
2, and 𝑞̂𝑇,𝑃

(𝑘)
 is defined by 

𝑄̂𝑇,𝑃
(𝑘)

𝑁𝑇
(𝑘) . Plates (squared ovals) 

represent the variables that are repeated in the model. For 

example, all variables in the 𝑇 ∈ {𝐶𝑆, 𝐶𝐼} plate are duplicated 

for corticosteroids (CS) and calcineurin inhibitors (CI).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: Estimates of the patient-dependent model parameters (𝑤𝑆
(𝑘)

 and 𝑤𝑇
(𝑘)

) fitted to Flares 

dataset. Black circles and the line segments represent the mean posterior and the 90% credible 

interval, respectively. Estimates greatly vary from one patient to another, confirming their patient-

dependence. A: 𝑤𝑆
(𝑘)

 (persistence of the severity score). The closer 𝑤𝑆
(𝑘)

is to 1, the more persistent 

the severity score is. B: 𝑤𝑇
(𝑘)

 (responsiveness to treatment). The value of 𝑤𝑇
(𝑘)

quantifies the expected 

change in the severity score by the treatment. 
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Figure S7: Estimates of the patient-dependent model parameters (𝑤𝑆
(𝑘)

 and 𝑤𝑇
(𝑘)

) fitted to SWET 

dataset. Black circles and the line segments represent the mean posterior and the 90% credible 

interval, respectively. Estimates greatly vary from one patient to another, confirming their patient-

dependence. A: 𝑤𝑆
(𝑘)

 (persistence of the severity score). The closer 𝑤𝑆
(𝑘)

is to 1, the more persistent 

the severity score is. B: 𝑤𝑇
(𝑘)

 (responsiveness to treatment). The value of 𝑤𝑇
(𝑘)

quantifies the expected 

change in the severity score by the treatment. 

 

 

 

 

 

 

 

 

 

 

 

Figure S8: Effect of multi-

category calibration on 

performance for the model 

trained with Flares (a- c) or 

SWET (d-f). a, d: RPSS 

learning curve. b, e: 

Calibration curves before 

calibration. c, f: Calibration 

curves after calibration. 
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Figure S9: Performance (A-C) and fit (D) of the model predicting the “scratch” severity score that 

was only available in Flares dataset. A-B: Learning curves for RPSS (A) and AUROC (B) for our 

model (black) compared to the null model (orange). C: Calibration curves. D: Posterior summary 

statistics of the main parameters. 

 

 

 

Figure S10: Learning curves of RPSS for the model 

trained on Flares dataset. The orange and blue circles 

correspond to the patients who dropped out of the 

study before and after the 28th iteration, respectively. 

The total RPSS (black) is the average of the two curves 

weighted by the proportion of the patients in each 

group at a given time. The orange and blue curves can 

both increase, while the average decreases (Simpson’s 

paradox). 
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Figure S11: Learning curves of the calibration (RPSS) and discrimination (AUROC) for one-day 

ahead predictions of our model (black) compared to the null model (orange) trained with Flares (A) 

and SWET (B) dataset. The null model had a lower performance overall, although the difference is 

less striking for the model fitted to SWET dataset than that to Flares dataset. 

 

 

Figure S12: Evolution of 𝜎𝑆 (standard deviation of the 

predictive distribution and standard deviation of the 

Gaussian component of the predictive distribution for the 

null model and our model, respectively) along with the 

forward chaining iteration for the model trained with 

SWET. Band corresponds to the 95% credible interval. 𝜎𝑆 

does not converge for the null random-walk model, 

although 𝜎𝑆 is its only model parameter, indicating that the 

null model is not stationary and not generalisable to unseen 

data, unlike our proposed model. 

 


