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Supplementary Materials and Method 

1 Construction of human protein-protein interactome 

To build a comprehensive human protein-protein interactome, we assembled 

data from 15 common resources with various kinds of experimental 

evidences. Specifically, we focus on high-quality PPIs with five types of data. 

(1) Binary PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems: 

we combined binary PPIs tested from two public available high-quality Y2H 

datasets,1,2 and one in-house dataset;3 (2) Kinase-substrate interactions by 

literature-derived low-throughput and high-throughput experiments from 

KinomeNetworkX,4 Human Protein Resource Database (HPRD),5 

PhosphoNetworks,6 PhosphositePlus,7 DbPTM 3.0,8  and Phospho. ELM.9 

(3) Carefully literature-curated PPIs identified by affinity purification followed 

by mass spectrometry (AP-MS), Y2H and by literature-derived low-throughput 

experiments, and protein three-dimensional structures from BioGRID,10 

PINA,11 Instruct,12 MINT,13 IntAct,14 and InnateDB.15 (4) Signaling network by 

literature-derived low-throughput experiments as annotated in SignaLink2.0.16 

(5) Protein complexes data (56,000 candidate interactions) identified by a 

robust affinity purification-mass spectrometry methodology were collected 

from BioPlex V2.016.17 The genes were mapped to their Entrez ID based on 

the NCBI database as well as their official gene symbols based on 

GeneCards (http://www.genecards.org/). Duplicated pairs were removed. 

Hence, inferred data, such as evolutionary analysis, gene expression data, 
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and metabolic associations, were excluded. The resulting updated human 

interactome used here includes 351,444 protein-protein interactions (PPIs) 

connecting 17,706 unique proteins. 

 

2. Collection of Alzheimer’s disease-associated genes 

In order to collect high-quality experimentally validated genes (AD seed 

genes) for characterization of AD pathogenesis, we first manually curate 

experimentally validated (seed) genes in amyloidosis (amyloid) and tauopathy 

(tau). These genes satisfied at least one of the following criteria: i) gene 

validation in large-scale amyloid or tauopathy GWAS studies; ii) in vivo 

experimental model evidence that knockdown or overexpression of the gene 

leads to AD-like amyloid or tau pathology. Based on these criteria, we 

obtained 54 seed genes related to amyloid and 27 seed genes related to 

tauopathy. We further integrateed a list of AD seed genes via assembling 

multiple data sources as below: i) 54 amyloid seed genes and 27 tauopathy 

seed genes; ii) 47 late-onset AD common-risk genes identified by large-scale 

genetic studies; iii) 35 genes with at least two AD-causing mutations from the 

Human Gene Mutation Database (HGMD) 18; iv) 39 disease genes curated in 

at least 2 of 4 following disease gene databases: HGMD (n=63), DisGeNET 

(n=23, score≥0.2) 19, MalaCards (n=79) 20, and Open targets (n=81, overall 

score≥0.7 and literature score > 0) 21. After removing the duplicates, 144 AD 

seed genes were obtained (Supplemental Table 4). 
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3 Enrichment analysis 

Bulk RNA-seq. We collected 2 RNA-seq datasets from brain or brain microglial 

of 5XFAD mouse model from two studies22,23. The differential expression 

analysis was done with DESeq package in R24. The threshold for significance 

of differential expression was set to a conservative statistical threshold of False 

Discovery Rate (FDR) < 0.05 and fold change (FC) ≥ 1.2. After transferring to 

human-orthologous gene, we obtain two differentially expressed gene (DEG) 

sets for 5XFAD_brain (n=17) and 5XFAD_microglial (n=432). 

 Furthermore, we collected 4 RNA-seq datasets from a recent study by 

Wang et al25. This study performed a genome-wide RNAseq to reveal the 

molecular mechanisms underlying microglia activation in response to 

pathological tau perturbation in Tg4510 mouse model. Microglia cells were 

isolated from Tg4510 brain and gene expression was profiled using RNA 

sequencing25. Four age groups of mice (2M, 4M, 6M, and 8M) were analyzed 

to capture longitudinal gene expression changes. Accession number for RNA-

Seq data in Gene Expression Omnibus (GEO) is GSE123467. Given the larger 

number of DEGs identified by a threshold FC of 1.2, we used a stricter criterion 

(FDR< 0.05 and FC≥ 2) to determine DEGs compared with corresponding wide 

type mice. All DEGs identified in mice models were further mapped to unique 

human-orthologous genes using the Mouse Genome Informatics (MGI) 

database26. Finally, we obtained 4 DEG sets for Tg4510, including Tg4510_2M 

(788), Tg4510_4M (629), Tg4510_6M (1013) and Tg4510_8M (792).  



 4 

 

Proteomics. The ten sets of DEPs were assembled from 3 AD transgenic 

models in two recent publications 27,28. The first publication by Savas et al. 

performed global quantitative proteomic analysis in hAPP and hAPP-PS1 

mouse models at young (3 month [M]) and old ages (12 M) 27. The samples 

were derived from frontal cortex (FC), hippocampal (HIP), and cerebellar (CB) 

extracts in mouse brain. The statistical significance of differential expression 

of all proteins was assessed using a two-tailed one-sample t-test on their 

corresponding peptide quantification ratios between both conditions. The 

obtained P values were FDR-adjusted for multiple hypothesis testing using 

the Benjamini–Hochberg correction 29. DEPs for each brain region in mouse 

were determined with the threshold of FDR < 0.05 and transferred to 

homologous human gene 30. We obtained four sets of DEPs [hAPP_3M 

(n=363), hAPP_12M (n=624), hAPP-PS1_3M (n=262) and hAPP-PS1_12M 

(n=476)] after merging the DEPs from different brain regions.  

The other publication by Kim et al. performed quantitative proteomics to 

uncover molecular and functional signatures in HIP of two transgenic mouse, 

including ADLPAPT that carry three human transgenes (APP, PS1 and tau), and 

hAPP-PS1(5XFAD) mouse 28. The ADLPAPT mice, generated by crossing the 

5XFAD strain with JNPL3 tau animals, could exhibit amyloid plaques, 

accelerated neurofibrillary tangle formation, neuronal loss in the CA1 area, and 

memory deficit at an early age. The 5XFAD mouse model develops early plaque 
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formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits.22 

Three different ages of mouse were used, including young (4 M), middle (7 M), 

and old (10 M). The statistical cut-off value for significance was set to P-value 

<0.05 for the Student’s t-test and fold-change >1.25. After transferring to 

homologous human gene30, we obtained six sets of DEPs, including 

ADLPAPT_4M (n=53), ADLPAPT_7M (n=124), ADLPAPT_10M (n=299), hAPP-

PS1_4M (n=54), hAPP-PS1_7M (n=168), and hAPP-PS1_10M (n=237). 
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Supplementary Figures  

 
Supplementary Fig. 1. The largest connected component (LCC) analysis 

for Alzheimer’s disease module. Experimentally identified AD genes form 

significantly disease module in the human interactome (P = 0.0147, 10,000 

permutation test). Experimentally validated gene products (proteins) are likely 

to cluster in the same network neighborhood or disease module within the 

human protein-protein interactome. The observed module sizes (S), 70 (seed 

genes, orange line) are significantly larger than the random expectation. 
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Supplementary Fig. 2. Differential gene expression of the typical AD risk 

genes (ARGs) between AD and controls. The genes include MEF2C (A), 

RIMS1 (B), APOE (C), ADAM10 (D), CHRNA7 (E), MAPK1 (F), PTK2B (G), 

and FOXO3 (H). The signal value of AD (patient or mouse model) and controls 

were extracted from original microarray datasets in Gene Expression Omnibus 

(GEO) database. We calculated P value for each gene between AD and 

controls using one side Wilcoxon test. 
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Supplementary Fig.3. Effects of pioglitazone on LPS-induced activation 

of GSK3β and CDK5 in human microglia HMC3 cells. HMC3 cells were 

pretreated with sildenafil and followed LPS treatment (1 μg/mL, 30 min). The 

total cell lysates were collected and subjected to Western blot analysis. 

Quantification data represent mean ± s.d. of two independent experiments. 
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Supplementary Table 11: phenotype definitions by ICD9/10 codes. 

Alzheimer’s disease 31,32 
3310, F00, F000A, F001A, F002A, F009A, G30, G300, G301, G308, G309  

Type 2 diabetes 33,34 
25000, 25050, 25002, 25052, 25010, 25060, 25012, 25062, 25020, 25070, 25022, 
25072, 25030, 25080, 25032, 25082, 25040, 25090, 25042, 25092, E089, E1100, 
E1101, E1110, E1121, E1122, E1129, E11311, E11319, E113219, E113291, 
E113292, E113293, E113299, E113319, E113391, E113392, E113393, E113399, 
E113419, E113491, E113492, E113493, E113499, E113519, E113591, E113592, 
E113593, E113599, E1136, E1139, E1140, E1142, E1143, E1144, E1149, E1151, 
E1152, E1159, E11610, E11618, E11620, E11621, E11628, E11630, E11641, 
E11649, E1165, E1169, E118, E119, E1300, E1310, E1311, E1322, E1329, E1339, 
E1349, E1351, E13628, E1365 , E1369 , E138 , E139  

Hypertension 35,36 
4010, 4011, 4019, I10, I169 

 

 

 

Supplementary References 
1 Rolland, T. et al. A proteome-scale map of the human interactome 

network. Cell 159, 1212-1226, doi:10.1016/j.cell.2014.10.050 (2014). 
2 Rual, J. F. et al. Towards a proteome-scale map of the human protein-

protein interaction network. Nature 437, 1173-1178, 
doi:10.1038/nature04209 (2005). 

3 Cheng, F. & Desai, R. J. Network-based approach to prediction and 
population-based validation of in silico drug repurposing. Nature 
communications 9, 2691, doi:10.1038/s41467-018-05116-5 (2018). 

4 Cheng, F., Jia, P., Wang, Q. & Zhao, Z. Quantitative network mapping of 
the human kinome interactome reveals new clues for rational kinase 
inhibitor discovery and individualized cancer therapy. Oncotarget 5, 
3697-3710, doi:10.18632/oncotarget.1984 (2014). 

5 Keshava Prasad, T. S. et al. Human Protein Reference Database--2009 
update. Nucleic acids research 37, D767-772, doi:10.1093/nar/gkn892 
(2009). 

6 Hu, J. et al. PhosphoNetworks: a database for human phosphorylation 
networks. Bioinformatics (Oxford, England) 30, 141-142, 
doi:10.1093/bioinformatics/btt627 (2014). 



 10 

7 Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and 
recalibrations. Nucleic acids research 43, D512-520, 
doi:10.1093/nar/gku1267 (2015). 

8 Lu, C. T. et al. DbPTM 3.0: an informative resource for investigating 
substrate site specificity and functional association of protein post-
translational modifications. Nucleic acids research 41, D295-305, 
doi:10.1093/nar/gks1229 (2013). 

9 Dinkel, H. et al. Phospho.ELM: a database of phosphorylation sites--
update 2011. Nucleic acids research 39, D261-267, 
doi:10.1093/nar/gkq1104 (2011). 

10 Oughtred, R. et al. The BioGRID interaction database: 2019 update. 
Nucleic acids research 47, D529-d541, doi:10.1093/nar/gky1079 (2019). 

11 Cowley, M. J. et al. PINA v2.0: mining interactome modules. Nucleic 
acids research 40, D862-865, doi:10.1093/nar/gkr967 (2012). 

12 Meyer, M. J., Das, J., Wang, X. & Yu, H. INstruct: a database of high-
quality 3D structurally resolved protein interactome networks. 
Bioinformatics (Oxford, England) 29, 1577-1579, 
doi:10.1093/bioinformatics/btt181 (2013). 

13 Licata, L. et al. MINT, the molecular interaction database: 2012 update. 
Nucleic acids research 40, D857-861, doi:10.1093/nar/gkr930 (2012). 

14 Orchard, S. et al. The MIntAct project--IntAct as a common curation 
platform for 11 molecular interaction databases. Nucleic acids research 
42, D358-363, doi:10.1093/nar/gkt1115 (2014). 

15 Breuer, K. et al. InnateDB: systems biology of innate immunity and 
beyond--recent updates and continuing curation. Nucleic acids research 
41, D1228-1233, doi:10.1093/nar/gks1147 (2013). 

16 Csabai, L., Olbei, M., Budd, A., Korcsmaros, T. & Fazekas, D. SignaLink: 
Multilayered Regulatory Networks. Methods in molecular biology (Clifton, 
N.J.) 1819, 53-73, doi:10.1007/978-1-4939-8618-7_3 (2018). 

17 Huttlin, E. L. et al. The BioPlex Network: A Systematic Exploration of the 
Human Interactome. Cell 162, 425-440, doi:10.1016/j.cell.2015.06.043 
(2015). 

18 Stenson, P. D. et al. The Human Gene Mutation Database: towards a 
comprehensive repository of inherited mutation data for medical 
research, genetic diagnosis and next-generation sequencing studies. 
Human genetics 136, 665-677, doi:10.1007/s00439-017-1779-6 (2017). 

19 Pinero, J. et al. DisGeNET: a comprehensive platform integrating 
information on human disease-associated genes and variants. Nucleic 
acids research 45, D833-d839, doi:10.1093/nar/gkw943 (2017). 



 11 

20 Rappaport, N. et al. MalaCards: an amalgamated human disease 
compendium with diverse clinical and genetic annotation and structured 
search. Nucleic acids research 45, D877-d887, 
doi:10.1093/nar/gkw1012 (2017). 

21 Koscielny, G. et al. Open Targets: a platform for therapeutic target 
identification and validation. Nucleic acids research 45, D985-d994, 
doi:10.1093/nar/gkw1055 (2017). 

22 Bouter, Y. et al. Deciphering the molecular profile of plaques, memory 
decline and neuron loss in two mouse models for Alzheimer's disease 
by deep sequencing. Frontiers in aging neuroscience 6, 75, 
doi:10.3389/fnagi.2014.00075 (2014). 

23 Grubman, A. et al. Mouse and human microglial phenotypes in 
Alzheimer's disease are controlled by amyloid plaque phagocytosis 
through Hif1α. bioRxiv, 639054 (2019). 

24 Anders, S. Analysing RNA-Seq data with the DESeq package. Mol Biol 
43, 1-17 (2010). 

25 Wang, H. et al. Genome-wide RNAseq study of the molecular 
mechanisms underlying microglia activation in response to pathological 
tau perturbation in the rTg4510 tau transgenic animal model. Molecular 
neurodegeneration 13, 65 (2018). 

26 Eppig, J. T. et al. in Systems Genetics     47-73 (Springer, 2017). 
27 Savas, J. N. et al. Amyloid Accumulation Drives Proteome-wide 

Alterations in Mouse Models of Alzheimer's Disease-like Pathology. Cell 
reports 21, 2614-2627, doi:10.1016/j.celrep.2017.11.009 (2017). 

28 Kim, D. K. et al. Molecular and functional signatures in a novel 
Alzheimer's disease mouse model assessed by quantitative proteomics. 
Molecular neurodegeneration 13, 2, doi:10.1186/s13024-017-0234-4 
(2018). 

29 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. Journal of the Royal 
statistical society: series B (Methodological) 57, 289-300 (1995). 

30 Eppig, J. T. et al. Mouse Genome Informatics (MGI): Resources for 
Mining Mouse Genetic, Genomic, and Biological Data in Support of 
Primary and Translational Research. Methods in molecular biology 
(Clifton, N.J.) 1488, 47-73, doi:10.1007/978-1-4939-6427-7_3 (2017). 

31 Wei, W. Q. et al. Combining billing codes, clinical notes, and medications 
from electronic health records provides superior phenotyping 
performance. Journal of the American Medical Informatics Association : 
JAMIA 23, e20-27, doi:10.1093/jamia/ocv130 (2016). 



 12 

32 Wilkinson, T. et al. Identifying dementia cases with routinely collected 
health data: A systematic review. Alzheimer's & dementia : the journal of 
the Alzheimer's Association 14, 1038-1051, 
doi:10.1016/j.jalz.2018.02.016 (2018). 

33 Kho, A. N. et al. Use of diverse electronic medical record systems to 
identify genetic risk for type 2 diabetes within a genome-wide association 
study. Journal of the American Medical Informatics Association : JAMIA 
19, 212-218, doi:10.1136/amiajnl-2011-000439 (2012). 

34 Wei, W. Q. et al. Impact of data fragmentation across healthcare centers 
on the accuracy of a high-throughput clinical phenotyping algorithm for 
specifying subjects with type 2 diabetes mellitus. Journal of the American 
Medical Informatics Association : JAMIA 19, 219-224, 
doi:10.1136/amiajnl-2011-000597 (2012). 

35 Federman, D. G., Krishnamurthy, R., Kancir, S., Goulet, J. & Justice, A. 
Relationship between provider type and the attainment of treatment 
goals in primary care. The American journal of managed care 11, 561-
566 (2005). 

36 Banerjee, D. et al. Underdiagnosis of hypertension using electronic 
health records. American journal of hypertension 25, 97-102, 
doi:10.1038/ajh.2011.179 (2012). 

 


