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Supplementary Figures 

Supplementary Figure 1| Examples of family structure in SPARK 
cohort 
Examples of family tree showing (​A​) multiple children were genotyped (quads; ​N​=3,192 families), (​B​)              
both parents and one child were genotyped (trios; ​N=​2,486 families), and (​C​) one parent and one child                 
were genotyped (duos; ​N​=2,448 families). Parent(s) could be either affected or unaffected. 
 

 

  



Supplementary Figure 2| MDS plots 
MDS plots of the first two components. MDS components for all HapMap population and SPARK trio                
children were analyzed jointly and plotted separately (HapMap population on the left and SPARK trio               
children on the right panel). The area enclosed in a gray box indicates sub-populations that were                
estimated by the representative HapMap population. Subpopulations were defined as 5 standard            
deviation (S.D.) around the centroid of the CEU and TSI for European [EUR], CHB, CHD and JPT for                  
EastAsian [EAS], and YRI and LWK for African [AFR]. See also Supplementary Table 2. 
 

 

 

  



Supplementary Figure 3| QC flow chart 
Numbers of variants and samples filtered during the QC step are shown on the left and right sides,                  
respectively. After all QC, we utilized 6,222 trios in the SPARK full dataset (only affected siblings were                 
considered). 
 

 
 
 
 

  



Supplementary Figure 4| Imputation quality assessment  
Imputation accuracy was assessed for all individuals by comparing them with whole-exome            
sequencing data. (​A​) Minimac4 imputed R​2 ​(y-axis) across minor allele frequency (MAF) bin (x-axis)              
on chromosome 20. (​B​) Mismatch rate (%) (y-axis) relative to WES binned by minimac4 imputed ​R​2                
(x-axis). (​C​) Distribution of mismatch rate across participants calculated by comparing to WES data.              
The vertical line indicates mismatch rate at 3% which was used as an exclusion criteria (72 individuals                 
were removed). 
 

 



Supplementary Figure 5| QQ plots for SPARK studies 
QQ-plots represent P-value distributions as observed against those expected under the null for (​A​)              
SPARK full data set and (​B​) SPARK data set subset to families of European ancestry. 
 

 

 

 

 

 

 

  



Supplementary Figure 6| Forest plots for the index SNPs identified in 
the SPARK full dataset and iPSYCH+PGC meta-analysis  
SNP was indicated as ​Chromosome​:​Position​:​Ref​:​Alt​_​SNPID​. 
N​ denotes the total number of individuals including pseudocontrols used for association study. 
 
 

 
 
 
 
 
 



 
 



Supplementary Figure 7| Regional association plot for the index SNP 
(rs716219) on Chromosome 1 from the meta-analysis (EUR) 

 

 
 
 



Supplementary Figure 8| Regional association plot for the index SNP 
(rs10099100) on Chromosome 8 from the meta-analysis (EUR) 

 

 

  



Supplementary Figure 9| Regional association plot for the index SNP 
(rs112436750) on Chromosome 17 from the meta-analysis (EUR) 
 

 

  



Supplementary Figure 10| Regional association plot for the index SNP 
(rs1000177) on Chromosome 20 from the meta-analysis (EUR) 
 

 
 
 
 
 

 

 

  



Supplementary Figure 11| Developmental trajectory of ASD risk genes 
Normalized expression values of ASD H-MAGMA genes in the cortex across different developmental             
time points (see more details in Supplementary Methods). Each point denotes mean expression level              
of ASD H-MAGMA genes for a cortical region of the given age. LOESS smooth curve plotted with                 
individual data points (N=410 and 453 for prenatal and postnatal samples, respectively) 

 

 
 
 



Supplementary Figure 12| Variance explained (Nagelkerke R​2​) by the 
ASD PRS 
The depth of color indicates the logFC for ASD cases and pseudo-controls and the number at the top                  
of each bar indicates significance. The x-axis indicates the GWAS P-value thresholds used to group               
SNPs from iPSYCH-PGC ​(1)​. The y-axis refers to the percentage of variance as Nagelkerke R​2​. 

 

https://paperpile.com/c/6yABu9/JdGN


Supplementary Figure 13| Quality check for MPRA experiment 
(​A​) Barcode coverage across 98 tested variants. (​B​) Reproducibility between individual biological            
replicates. Each dot denotes log(sum of barcoded RNA counts/sum of barcoded DNA counts) for each               
variant. R indicates correlation coefficients from generalized linear regression. (​C​) ​Volcano plot of 98              
variants within the novel loci identified in SPARK GWAS (​chr8:38.19M - chr8:38.45M​) showing fold              
change of barcoded expression of risk alleles compared to protective alleles in the x-axis, and               
statistical significance (-log10(FDR)) in the y-axis. The vertical lines indicate the 1.5 or -1.5 log FC                
thresholds. (​D​) Boxplot of GC content for barcodes mapped to rs7001340 alleles. P-value calculated              
by a two-sample t-test. 

 



Supplementary Figure 14| Disruption of transcription factor binding 
motifs by rs7001340 
(​A​) The rs7001340 T allele is predicted to disrupt TBX1 (left) and SMARCC1 (right) binding motif ​(2,3)​.                 
The position of rs7001340 is marked as a red number on the x-axis and highlighted in grey. (​B​)                  
Heatmap for expression of transcription factors in brain cell types from scRNA-seq. Color indicates              
normalized expression for given cell types. scRNA-seq data were obtained from           
http://solo.bmap.ucla.edu/shiny/webapp/​ ​(4)  
 

 

 

https://paperpile.com/c/6yABu9/ahX4+S2DSw
http://solo.bmap.ucla.edu/shiny/webapp/
https://paperpile.com/c/6yABu9/azTLe


Supplementary Figure 15| Expression level of eGenes regulated by 
rs7001340 in the adult brain 
Expression levels of (​A​) ​LETM2​ and (​B​) ​LSM1​ by rs7001340 genotypes in the adult brain. The ASD 
risk allele for rs7001340 is T and the protective allele is C. Individuals with allelic dosage (0-0.1 as 
C/C, 0.9-1.1 as C/T, 1.9-2.0 as T/T) are shown. 
 

 

 



Supplementary Tables 

Supplementary Table 1| Study characteristics 
 

 GWAS (% male) PRS​1​ (% male) 

DSM Sub-diagnosis(if applicable)  

Asperger’s Disorder 613 (80.10%) 463 (82.07%) 

Autism or Autistic Disorder 728 (81.59%) 469 (81.88%) 

Autism Spectrum Disorder 4,407 (79.26%) 2,845 (78.70%) 

NOS 440 (80.00%) 317 (81.07%) 

Ancestry based on genotypes   

European 4,535 (78.77%) 4,097 (79.62%) 

African 37 (75.68%) - 

East Asian 83 (87.95%) - 

Others / Admixed 1,567 (81.80%) - 

Total 6,222 (79.65%) 4,097 (79.62%) 

Family Type   

Multiple-affected children 
w/ an affected parent 

- 14 (71.43%) 

Multiple-affected children 
w/ unaffected parents 

- 420 (78.10%) 

One affected child w/ 
affected parent(s) 

- 45 (88.89%) 

One affected child w/ 
unaffected parents 

- 3,618 (79.71%) 

Total   4,097 (79.62%) 

 
1 ​for PRS, we analyzed one individual from each family from European ancestry (4,097) 
NOS : Pervasive Developmental Disorder - Not Otherwise Specified 

  



Supplementary Table 2| HapMap population used for MDS 
This table is related to Supplementary Figure 2 
ID Population # of 

individuals 
ASW African ancestry in  Southwest USA 49 
CEU Utah residents with  Northern and Western European ancestry from the 

CEPH collection 
112 

CHB Han Chinese in Beijing,  China 84 
CHD Chinese in Metropolitan  Denver, Colorado 85 
GIH Gujarati Indians in  Houston, Texas 88 
JPT Japanese in Tokyo, Japan 86 
LWK Luhya in Webuye, Kenya 90 
MEX Mexican ancestry in Los  Angeles, California 50 
MKK Maasai in Kinyawa, Kenya 143 
TSI Toscani in Italia 88 
YRI Yoruba in Ibadan, Nigeria 113 

 

Supplementary Table 3| ASD risk loci have pleiotropic effects on 
various phenotypes 
see Excel file; 

Supplementary Table 4| Association results across populations 
    EUR    AFR    EAS 

SNP EA OA EAF OR 
(95%CI) P   EAF OR 

(95%CI) P   EAF OR 
(95%CI) P 

rs716219 T C 0.34 1.10 
(1.03 - 1.17) 0.004  0.19 2.51 

(0.87 - 7.29) 0.090  0.36 1.26 
(0.79 - 2.01) 0.323 

rs10099100 C G 0.33 1.04 
(0.98 - 1.11) 0.175  0.39 1.552 

(0.81 - 2.98) 0.185  0.02 0.200 
(0.02 - 1.66) 0.136 

rs60527016 C T 0.21 0.83 
(0.77 - 0.89) 3.64×10​-07  0.03 0.32 

(0.03 - 3.21) 0.330  0.29 1.00 
(0.60 - 1.65) 0.993 

rs112436750 A AT 0.24 1.10 
(1.03 - 1.18) 0.006  0.01 0.00 

(2.58×10​-22​ - 3.59×10​14​) 0.703  <0.01 NA NA 

rs1000177 T C 0.23 1.06 
(0.99 - 1.14) 0.110   0.38 1.46 

(0.68 - 3.10) 0.331   0.28 1.31 
(0.80 - 2.16) 0.284 

 

Supplementary Table 5| Heritability Enrichment in active enhancers or 
promoters 
see Excel file; 

Supplementary Table 6| H-MAGMA Gene list 
see Excel file; 
Gene position is based on hg19 coordinates. 



Supplementary Table 7| Gene ontologies enriched in ASD genes 
see Excel file; 
Header information 
query.number: Number of input query (we tested only one dataset so all should be 1) 
significant: TRUE if the result is significant at FDR corrected P-value (0.05) 
p.value: FDR corrected P-value 
term.size: Number of genes in Gene Ontology (GO) used for hypergeometric test 
query.size: Number of genes in query used for hypergeometric test 
overlap.size: Number of overlapped genes used for hypergeometric test 
precision: Precision 
recall: Recall 
term.id: Gene set identifier  (GO ID) 
domain: Sub-ontologies from Gene Ontology MF: Molecular Functions, BP: Biological Process 
subgraph.number: 
term.name: Gene set name (GO name) 

Supplementary Table 8| Genetic correlations between ASD and 
twelve brain and behavioral phenotypes  
 

Category Traits r​g SE p FDR 

Psychiatric /Cognitive Major depressive disorder 0.326 0.031 1.68×10​-26 2.02×10-​25 

 ADHD 0.319 0.049 2.41×10​-11 2.17×10​-10 

 Intelligence 0.230 0.027 2.08×10​-17 2.28×10​-16 

 Schizophrenia 0.221 0.032 3.18×10​-12 3.18×10​-11 

 Bipolar disorder 0.151 0.042 4.00×10​-04 0.002 

 Neuroticism 0.140 0.030 2.58×10​-06 1.81×10​-05 

Addiction Cannabis use 0.292 0.050 5.92×10​-09 4.73×10​-08 

 Cigarettes per day 0.155 0.036 1.76×10​-05 1.06×10​-04 

 Drinks per week 0.033 0.033 0.320 1.00 

Degenerative brain 
disorders 

Parkinson’s disease 0.021 0.050 0.677 1.00 

Alzheimer’s disease -0.032 0.067 0.632 1.00 

Brain size Intracranial volume 0.004 0.054 0.934 1.00 

 

Supplementary Table 9| MPRA results 
see Excel file;  



Supplementary Methods 

Genotyping and whole-exome sequencing 

Genotyping and sequencing data were generated at the SPARK sites as previously described ​(5)​.              

Briefly, DNA was extracted from saliva samples and genotyped by Illumina Infinium Global Screening              

Array-24 v1.0 (GRCh38). For WES, DNA was subjected to target capture using VCRome+PKv2 ​(6)              

and sequenced using Illumina Novaseq with paired-end 100 bp reads at Regeneron. 

SNPs were removed by SPARK prior to download if they were in 56 of 59 ACMG ​(7) (American                  

College of Medical Genetics and Genomics) recommendations, excluding ASD relevant mutations in            

PTEN​, ​TSC1​, and ​TSC2​. SNPs registered to be pathogenic or likely pathogenic based on ClinVar               

were also excluded ​(8)​.  

Pre-imputation quality control for genotype chip data 

Prior to sample quality control (QC), we removed SNPs located within Y or mitochondrial              

chromosomes (​Supplementary Fig. 2​), or with low genotyping rate ( < 0.9). Then, we removed               

samples with a high missingness ( > 0.1) and the discrepancy between self-reported sex and               

genotypes. Using WES data, we also checked if there were sample swaps or contaminations              

(CHIP-MIX or FREE-MIX > 0.8) by VerifyBamID ​(9) (​https://genome.sph.umich.edu/wiki/VerifyBamID​),         

resulting in 10 samples being removed. Additional QC was performed based on the following QC               

parameters: we retained SNPs with genotyping rate ≥ 0.98, minor allele frequency [MAF] ≥ 0.01,               

deviation from Hardy-Weinberg equilibrium (HWE) in founders p ≥ 10​-6 for trios, and p ≥ 10​-6 in cases                  

or p ≥10​-10 in controls for remaining individuals. For trios, we removed families in which more than                 

10,000 SNPs have Mendelian-errors. SNPs in which more than four families have Mendelian errors              

were also excluded. 

https://paperpile.com/c/6yABu9/Sje7C
https://paperpile.com/c/6yABu9/InG12
https://paperpile.com/c/6yABu9/007l9
https://paperpile.com/c/6yABu9/EAgTr
https://paperpile.com/c/6yABu9/UxsY9
https://genome.sph.umich.edu/wiki/VerifyBamID


Genotype phasing and imputation 
Phasing was performed using EAGLE v2.4.1 ​(10) ( ​https://data.broadinstitute.org/alkesgroup/Eagle/​)         

within SPARK samples with ‘--allowRefAltSwap’ and      

‘--geneticMapFile=genetic_map_hg38_withX.txt.gz’. The genetic coordinates file     

(genetic_map_hg38_withX.txt.gz) was distributed by EAGLE. Before making pseudocontrols, we         

removed two individuals, one each from two pairs of monozygotic twins with Identity-By-Descent             

(PI_HAT)>0.9, by selecting the individual with lower call rates. Then we defined pseudocontrols by              

PLINK 1.9 ​(11) (​www.cog-genomics.org/plink/1.9/​) for trios by selecting the alleles not inherited from             

the parents to the case ​(12)​. We re-phased all SPARK samples that passed our QC measures with                 

pseudocontrols. Imputation was performed on the Michigan imputation server ​(13)          

(​https://imputationserver.sph.umich.edu/index.html​). Since SPARK participants are genetically diverse,       

we imputed genotypes using the Trans-Omics for Precision Medicine (TOPMed) Freeze 5b            

(​https://www.nhlbiwgs.org/​) reference panel which consists of 125,568 haplotypes from multiple          

ancestries. Dosage was then converted into a PLINK2 (​www.cog-genomics.org/plink/2.0/​) pgen          

retaining phase information. Imputation accuracy relative to WES was assessed using a similar             

approach to previous work ​(14)​ (Supplementary Figure S4). 

Assessment of imputation accuracy 

We assessed the accuracy of imputed genotypes by comparing with WES data, using a similar               

approach to previous work ​(14) (​Supplementary Figure 4​). First, we selected SNPs shared between              

imputed data and WES for all individuals. We then restricted our analysis to SNPs with 0%                

missingness in WES. We prepared three sets of SNP lists based on minimac4 imputed ​R​2​. Genotypes                

were then compared by vcf-compare implemented in VCFtools v0.1.5 ​(15)​. The mismatch rate was              

estimated for each individual as (​the total number of mismatched sites​) / (​the total number of                

mismatched sites + the total number of matched sites​) for sites with MAF ≥ 0.01. Before the final                  

https://paperpile.com/c/6yABu9/OZ5dO
https://data.broadinstitute.org/alkesgroup/Eagle/
https://paperpile.com/c/6yABu9/iE8EZ
http://www.cog-genomics.org/plink/1.9/
https://paperpile.com/c/6yABu9/JxIfE
https://paperpile.com/c/6yABu9/OQJYK
https://imputationserver.sph.umich.edu/index.html#!
https://www.nhlbiwgs.org/
http://www.cog-genomics.org/plink/2.0/
https://paperpile.com/c/6yABu9/fvub0
https://paperpile.com/c/6yABu9/fvub0
https://paperpile.com/c/6yABu9/hom1L


GWAS analysis, we removed poorly imputed individuals with mismatch rate > 3% and selected              

complete trios (family where the child and both parents survived QC). 

Meta-analysis with iPSYCH-PGC study 

GWAS summary statistics from Grove ​et al​, (iPSYCH-PGC study ​(1)​) were obtained from             

https://www.med.unc.edu/pgc/shared-methods/data-access-portal/​. Chromosomal positions were    

converted from hg19 to hg38 using R/Bioconductor package liftOver (v.1.4.0) ​(16)           

(​https://master.bioconductor.org/packages/release/workflows/html/liftOver.html​). 15% of SNPs were     

dropped due to liftOver failure or mismatch with the SPARK dataset. METAL (release 2018-08-28)              

(17) was used for meta-analysis of our SPARK GWAS (both SPARK full dataset/ European              

population) and iPSYCH-PGC GWAS summary statistics. The meta-analysis was performed using an            

inverse-variance weighted fixed-effect design without GC correction.  

Investigation of pleiotropic effects for ASD loci 
To investigate the pleiotropic effects of identified loci, we tested overlaps with index SNPs from               

various GWAS for multiple phenotypes available in the NHGRI/EBI GWAS Catalog (downloaded            

October 22, 2019) ​(18)​. We restricted SNPs to a genome-wide significant level (​P​<5.0×10​-8​). Signals              

were considered to overlap if the index SNPs of ASD loci and other GWAS loci were in strong linkage                   

disequilibrium (LD) (​r​2​ > 0.8 in the European ancestry from the 1000 Project [1KG EUR] ​(19)​). 

Estimating polygenic Risk Score 

Polygenic risk scores (PRSs) were calculated based on the iPSYCH-PGC study ​(1) using PRSice-2              

(20) (​https://www.prsice.info/​). To estimate PRS more accurately, we used only SNPs with MAF >              

0.01, INFO > 0.9, and that were located outside of MHC regions (chr6:25M-35M). We also used only                 

SNPs tested for association in both iPSYCH and PGC. We identified LD-independent SNPs using              

clumping with parameters specifying the distance from the index SNP (250 kb) and LD (​r​2 >= 0.1)                 

through PRSice-2. The LD was calculated using 1KG EUR phase3. To identify the set of SNPs that                 

https://paperpile.com/c/6yABu9/JdGN
https://www.med.unc.edu/pgc/shared-methods/data-access-portal/
https://paperpile.com/c/6yABu9/dBNGH
https://master.bioconductor.org/packages/release/workflows/html/liftOver.html
https://paperpile.com/c/6yABu9/NvhVs
https://paperpile.com/c/6yABu9/FifYd
https://paperpile.com/c/6yABu9/LKoRw
https://paperpile.com/c/6yABu9/JdGN
https://paperpile.com/c/6yABu9/jKCop
https://www.prsice.info/


best explains risk for ASD, we set multiple P-value thresholds: 5×10​-8​, 1×10​-6​, 0.001, 0.01, 0.05, 0.1,                

0.2, 0.5 and 1.  

For the SPARK dataset, in order to avoid the impact of population stratification on PRS prediction                

(21–23)​, we restricted the analysis to European individuals as described above and also selected only               

one case-pseudocontrol pair from each family. Dosage information was converted to hard-call            

genotypes using PLINK2 with --geno 0 and --maf 0.05. We estimate the phenotypic variance              

explained in the SPARK dataset by the iPSYCH-PGC PRS as the Nagelkerke ​R​2​. 

For family-type stratified PRS analysis, families were assigned into four groups: 1) multiple children              

and father/mother are affected, 2) multiple children are affected but mother and father are unaffected,               

3) one child and father/mother are affected, 4) only one child is affected. PRS comparisons included                

10 genotype PCs as covariates, to control for population stratification, as well as sex. 

For sex-stratified PRS, the covariates in the regression included the top 10 PCs of case individuals.  

For Parent-of-Origin PRS analysis, the PRS was calculated for paternal and maternal alleles with 10               

PCs derived from each parent as covariates. We first generated Oxford-format .haps files containing              

SNP information (name and position) and individual’s phased genotypes by PLINK2 ‘--haps’. Since             

this process requires all individuals to have phased genotypes after a hard call, we ran this process for                  

each trio to obtain the maximum number of SNPs. Then, we classified each SNP in a child as                  

maternal or paternal based on phased information. We note that we excluded SNPs if both parents                

have the same haplotypes due to unknown origin.  

We referred the same risk alleles used in other PRS analyses described above. To reduce the effect                 

of population stratification, we calculated 10 PCs for parents. Paternal PRSs were regressed with 10               

PCs from the father, while maternal PRSs were regressed with 10 PCs from the mother. 

Heritability Enrichment Analysis 

We calculated partitioned heritability enrichment including a baseline model ​(24) for two datasets as              

below. 

https://paperpile.com/c/6yABu9/Wq0fQ+3dmkd+zc6CL
https://paperpile.com/c/6yABu9/GyID9


(1) Active enhancer or promoter states present in 127 tissue types ​(25)​. Active enhancer and promoter                

regions were defined based on chromatin states predicted by chromHMM ​(26) and included: ‘active              

transcription start site’ (state 1), ‘flanking active TSS’ (state 2), ’genic enhancers’ (state 6), and               

’enhancers’ (state 7) in the core 15-state model ​(26)         

(​https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html​).  

(2) For differentially accessible regions between CP and GZ, ATAC-seq data were obtained from our               

previous work ​(27)​. Differential chromatin accessible region was defined if logFC is less than -1 (CP                

specific) or greater than 1 (GZ specific) at FDR < 0.05. Because the number of differential chromatin                 

accessible regions was different between CP specific peaks (​n = 17,803) and GZ specific peaks (​n =                 

19,260), GZ specific peaks were downsampled to 17,803 by random selection.  

We generated annotation files to label SNPs within these annotated regions of the genome. LD scores                

for each annotation were computed by LDSC based on 1KG EUR phase3. We considered FDR < 0.05                 

for enrichment​ ​P-value as a significance threshold. 

Genetic correlation analysis 

We tested genetic correlation of ASD with the following phenotypes: ADHD ​(28)​, intelligence ​(29)​,              

bipolar disorder ​(30)​, schizophrenia ​(31)​, major depressive disorder ​(32)​, neuroticism ​(33)​, cannabis            

use ​(34)​, alcohol (drinks per week) ​(35)​, smoking (cigarettes per day) ​(35)​, Alzheimer’s disease ​(36)               

and Parkinson’s disease ​(37)​. The .sumstats.gz were prepared in the same way described above.              

Genetic correlations (​r​g​) were estimated by LDSC. FDR < 0.05 was considered statistically significant. 

H-MAGMA  
SNP to Ensembl gene annotation was carried out by Hi-C coupled MAGMA (H-MAGMA) as previously               

described ​(38)​. In brief, we used Gencode v26 for assigning exonic SNPs and promoter SNPs (2kb                

upstream to the transcription start sites) to genes based on the location ​(39)​. Intronic and intergenic                

SNPs were mapped to their target genes based on chromatin interactions to promoters and exons               

generated by fetal brain Hi-C ​(40)​. Using this gene-SNP relationship as input, we ran MAGMA (v1.0.7)                

https://paperpile.com/c/6yABu9/sS6fM
https://paperpile.com/c/6yABu9/qlbmr
https://paperpile.com/c/6yABu9/qlbmr
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://paperpile.com/c/6yABu9/kZ4lA
https://paperpile.com/c/6yABu9/20gJt
https://paperpile.com/c/6yABu9/kFOec
https://paperpile.com/c/6yABu9/m8EMq
https://paperpile.com/c/6yABu9/bWmrR
https://paperpile.com/c/6yABu9/reynS
https://paperpile.com/c/6yABu9/5iU7b
https://paperpile.com/c/6yABu9/D57AH
https://paperpile.com/c/6yABu9/eT3DS
https://paperpile.com/c/6yABu9/eT3DS
https://paperpile.com/c/6yABu9/FHTZP
https://paperpile.com/c/6yABu9/iWQ2h
https://paperpile.com/c/6yABu9/0pY4G
https://paperpile.com/c/6yABu9/QehAb
https://paperpile.com/c/6yABu9/Mx1Ya


(41) to aggregate SNP-based P-values to gene-based P-values. We set FDR < 0.1 as the significance                

threshold. 

H-MAGMA gene list was used for further functional analyses including gene ontology enrichment             

analysis and investigation of developmental trajectory profiles. We primarily focused on H-MAGMA            

results using fetal brain Hi-C given partitioned heritability enrichment in regulatory elements present             

during this time period. For expression trajectory analysis (described below), we combined fetal and              

adult brain H-MAGMA results to ensure that the prenatal enrichment is not driven by using only fetal                 

brain Hi-C data ​(42)​. 

Gene ontology enrichment analysis for H-MAGMA ASD genes 

Gene ontology enrichment analysis was performed using g:Profiler (v0.6.7) ​(43)          

(​https://biit.cs.ut.ee/gprofiler/​) with the “ordered list” option in which all genes were ranked based on              

P-value from H-MAGMA gene-based test. We selected 18,494 protein-coding genes that were            

detected in the H-MAGMA gene list and not located within the MHC region (chr6:25M-35M) as the                

background​. ​We tested enrichment within the Gene Ontology Molecular Functions (MF) and Biological             

Process (BP) categories. ​Gene ontology terms that had less than 5 genes overlapped with query were                

excluded. 

 

Overlap with genes derived from H-MAGMA and other studies 

We evaluated convergence between common and rare variant risk factors by overlapping genes             

derived from H-MAGMA (common variants driven) with genes that harbor rare variation in ASD (rare               

variant driven; 102 genes identified by the updated version of Transmitted And ​De novo Association               

[TADA] model ​(44) that incorporates probability of loss-of-function intolerance score ​(45,46) for            

protein-truncating variants and missense badness, PolyPhen-2, constraint score ​(47) for missense           

variants, FDR ≤ 0.1) ​(48)​. Since this study was conducted using WES, we only selected protein-coding                

genes identified by H-MAGMA (263 genes at FDR<0.1, 18,757 protein-coding genes from H-MAGMA             
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annotation) as background. The significance of overlap between common variant implicated genes            

(H-MAGMA) and rare variant implicated genes ​(48) was calculated by the hypergeometric test (phyper              

in R) as below. 

phyper(​q-1​, ​m​, ​n​, ​k​, lower.tail = FALSE) 

where ​q = number of overlapped genes (= 5), ​m = number of genes hit by rare variants (= 102), n =                      

number of unoverlapped genes (=18,655), ​k​ = number of genes identified by H-MAGMA (= 263)  

 

Differentially expressed genes (DEGs) from the ASD post-mortem cortex compared to neurotypical            

controls was obtained from genome-wide transcriptome data ​(49)​. DEGs were defined if            

log2FoldChange > 0 (upregulated in individuals with ASD) or log2FoldChange < 0 (downregulated in              

individuals with ASD) at FDR < 0.05.  

Developmental expression profiles of ASD linked genes 

Transcriptome data from embryonic brains and adult brain at 15 developmental epochs was obtained              

from Kang et al., ​(50) through dbGap (Accession phs000406.v1.p1). Because we did not find any               

enrichment in subcortical tissues by LDSC heritability enrichment, we extracted expression data in the              

cortex (frontal cortex, temporal cortex, parietal cortex and occipital cortex) from donors with age < 45. The                 

expression level of 397 protein-coding genes identified by adult brains and/or fetal brains based on               

H-MAGMA (FDR < 0.1) were centered to mean expression level per sample ‘scale(center=T,scale=F)’ by              

R. ​Prenatal and postnatal were defined if age of donor is between 4 post-conceptional week (PCW)                

and 38 PCW, or after birth to 45 year olds, respectively. Expression level between the two groups                 

were compared by t-test. ​More details were described elsewhere ​(1,38)​.  

Construction of a Massively Parallel Reporter Assay (MPRA) Library  

 

Because the top locus (chr8:38.19M - chr8:38.45M) was also detected in the previous schizophrenia              

GWAS which is better powered, we obtained credible SNPs for the locus based on schizophrenia               
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GWAS results (Supplementary Table S11 in ​(31)​). Ninety-eight credible SNPs were detected in this              

locus. We obtained 150bp sequences that flank each credible SNP with the SNP at the center (74bp +                  

75bp). Because each SNP has risk and protective alleles, this resulted in 196 total alleles to be tested.                  

The restriction sites for MluI (ACGCGT) and KpnI (GGTACC), as well as primer sequences, were               

placed upstream and downstream of the 150bp sequences. The resulting 200bp library was made on               

Agilent Microarrays (Agilent Technologies), which was subsequently resuspended in 50uL of           

Tris-EDTA (TE) buffer (pH 8.0). The library was further diluted to 1/20th of the concentration. We first                 

amplified the diluted library using qPCR (KAPA HiFi HotStart Real-time PCR Master Mix [Kapa              

Biosystems]) to find the optimal number of PCR cycles to amplify the library. The resulting               

multicomponent plot provided the number of cycles (10 cycles) to be used for the amplification               

(corresponding to 1/4th of the fluorescence to prevent overamplification). After PCR amplification, the             

resulting library was cleaned up with Zymo Clean and Concentrator Kit (Zymo Research) and diluted               

to 0.5ng/uL. Twenty base-pair random barcodes (synthesized from IDT) were then added to the              

libraries using another round of PCR. We first performed qPCR to determine the best number of                

amplification cycles, and then the random barcodes were added to the libraries via a PCR using                

NEBNext Q5 Hot Start Hifi (NEB) with 10 cycles. The library was again cleaned up with Zymo Clean                  

and Concentrator Kit and run on a 2% agarose gel to check for the correct size (250bp). 

 

The resulting library with the barcodes was subsequently digested with MluI-HF (NEB), and SpeI-HF              

(NEB) in 1X Cut-Smart buffer (NEB) for 1 hour at 37℃. The digested library was cleaned up with                  

Zymo Clean and Concentrator Kit. We also digested a previously described MPRA backbone             

(Doner_eGP2AP_RC) ​(51) with MluI-HF, and SpeI-HF in 1X Cut-Smart buffer with rSAP (NEB). The              

digested library and backbone were then ligated together at room temperature for 30 minutes using T7                

DNA Ligase (NEB) in a 1:3 ratio of Doner_eGP2AP_RC:library. The ligated product was cleaned with               

Zymo Clean and Concentrator Kit and eluted with molecular biograde water (HyClone). The ligated              

product (Doner_eGP2AP_RC-library) was transformed into NEB 5-alpha Electrocompetent E. coli          

(NEB). The E. coli was grown in SOC media for 1 hour at 30℃. The cells were then diluted in units of                      

https://paperpile.com/c/6yABu9/bWmrR
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10 (undiluted, 1/10, 1/100, 1/1,000, and 1/10,000), and plated on LB plates with 50 µg/mL Kanamycin                

(VWR). These plates were grown overnight at 30°C. The next day, the number of barcodes per variant                 

was estimated by counting the colonies on 1/10,000 plate. We aimed for >100 barcodes per variant,                

because we hypothesized that the small effect size of a given variant in gene regulation (based on                 

eQTL) would require many barcodes to reliably estimate the gene regulatory activities. If the estimated               

barcodes per variant were greater than or equal to 100, then the undiluted ligated plate was scraped                 

and grown in 2L of 50 µg/mL Kanamycin LB miller broth for 8 hours at 30°C in a shaking incubator.                    

After 8 hours, Doner_eGP2AP_RC-library was isolated using Qiagen plasmid maxi prep kit (Qiagen,             

Cat# 12163). The isolated Doner_eGP2AP_RC-library was tested for the insert using colony PCR and              

restriction enzyme digestion (KpnI-HF and PsiI-HF [NEB] for 1 hour at 37°C).  

 

We then mapped the random barcodes to the alleles from Doner_eGP2AP_RC-library. We again used              

a qPCR to estimate the optimal PCR amplification cycles. Based on the cycles corresponding to 1/4th                

of the fluorescence on the multicomponent plot, we amplified 4ng of Doner_eGP2AP_RC-library at 10              

cycles (KAPA HiFi HotStart Real-time PCR Master Mix (2X)) using P5 and P7 Illumina flow cell                

adapter primers. The amplified product was cleaned up using Zymo Clean and Concentrator Kit, and               

the resulting library was sequenced by Illumina Miseq 2x150 at UNC High-throughput Sequencing             

Facility (HTSF). Barcodes were then mapped to individual alleles via custom scripts            

(​https://github.com/kinsigne/bc_map.git​).  

 

We then inserted a minimal promoter (minP) and luciferase (luc2) into Doner_eGP2AP_RC-library, so             

that the 150bp sequences that contain the variants were located upstream of the minP, and the                

barcodes are located downstream of luc2. The Doner_eGP2AP_RC-library was digested for 3 hours             

at 37°C with KpnI-HF and XbaI-HF using 1X Cutsmart Buffer and rSAP. The digested library was gel                 

extracted using QIAquick Gel Extraction Kit (Qiagen). The minP-luc2 insert was generated by             

digesting pMPRAdonor2 (Addgene plasmid #49353) with KpnI-HF and XbaI-HF using 1X Cutsmart            

Buffer for 1 hour at 37°C. The Doner_eGP2AP_RC-library and minP-luc2 were then ligated together              

https://github.com/kinsigne/bc_map.git


using T7 DNA ligase in a 1:3 ratio (Doner_eGP2AP_RC-library:minP-luc2). The resulting ligation            

product (the final MPRA library) was cleaned up with Zymo Clean and Concentrator Kit and               

subsequently transformed into NEB 5-alpha Electrocompetent E. coli. The E.coli was plated on LB              

plates, and the barcodes per variant was calculated from the plates as described above. If the                

estimated barcodes per variant was greater than or equal to 100, then the undiluted ligated plate was                 

scraped and grown as described previously. After 8 hours, the final MPRA library was isolated using                

Qiagen plasmid maxi prep kit. We measured the concentration of this library by Qubit 1X DS Broad                 

Range (Invitrogen). We further confirmed the resulting library via restriction digestion (KpnI-HF and             

PsiI-HF) and PCR. 

MPRA 

We seeded HEK293 cells (​ATCC® CRL-11268™​) in 6 wells (total 6 replicates) to be 70-90% confluent                

at transfection. We used lipofectamine 2000 (Invitrogen cat#11668) with our final MPRA library             

following manufacture instructions. The media on the plated cells was removed and replaced with              

Optimem (ThermoFisher Scientific). Per well, we diluted 2.5 ug of the complete MPRA construct and               

12uL of lipofectamine 2000 reagent in 150uL of Optimem, respectively. The diluted MPRA construct              

was then added to the diluted lipofectamine. This mixture was incubated at room temperature for 5                

minutes, and then added to each well. RNA was extracted from each well using RNeasy Mini Kit                 

(Qiagen cat#74104) 48 hours after transfection. We performed reverse transcription (SSIV reverse            

transcriptase [Invitrogen]) using primers that amplify the end of luciferase and random barcodes,             

which would go on to be used to quantify the barcoded expression. The resulting cDNA was amplified                 

with the first PCR using the number of cycles (10 cycles) determined by qPCR as described above.                 

The amplified cDNA was then cleaned up with Zymo Clean and Concentrator Kit and then run in a 4%                   

E-gel (Invitrogen) to verify the correct size. This step was followed by a second PCR (10 cycles) that                  

adds on a unique index (6bp) and Illumina sequencing adaptors. The resulting amplified product was               

cleaned up using Ampure XP beads (Beckman Coulter) to clean out primers and primer dimers.  

 



As MPRA measures RNA to DNA ratio, we also generated DNA libraries for the final MPRA library                 

used for the transfection of HEK293 cells. The barcode region of the plasmid was amplified via PCR                 

using 100ng of plasmid DNA with 8 cycles. The resulting PCR product was gel extracted from a 1.8%                  

agarose gel using QIAquick Gel Extraction Kit. A second PCR was followed to add on a unique index                  

(6bp) and Illumina sequencing adaptors with 6 PCR cycles. The resulting amplified product was              

cleaned up using Ampure XP beads. This final MPRA DNA-seq and RNA-seq libraries were              

sequenced by Illumina Hiseq 2500 2x150 at UNC HTSF. 

MPRA analysis 

Because 20bp barcodes may have a larger impact on gene regulation than an allelic difference, we                

first aggregated RNA barcode counts by taking the sum of RNA barcode counts for a given allele to                  

obtain summarized allelic expression. To control for transfection efficiency and barcode dispersion            

during cloning, we also aggregated DNA barcode counts. The resulting RNA barcode counts for              

protective and risk alleles in a total of six replicates were compared against the corresponding plasmid                

DNA barcodes using an mpra package in R ​(52,53) (​https://github.com/hansenlab/mpra​), which           

yielded allelic expression differences for 98 variants tested. To find the causal regulatory variant out of                

98 candidate variants, a simple selection was performed based on the false discovery rate (FDR) and                

log fold change (logFC) values that represent significance of allelic expression differences. We used              

FDR<0.01 and |logFC|>1.4 (which represents >50% of up/downregulation mediated by an allelic            

difference) as a selection criterion, which resulted in two variants: rs7001340 and rs16887340. Among              

them, rs7001340 was the top variant by P-value. Related figures are provided in Supplementary              

Figure S15. 

Functional annotation of rs7001340 locus with multi-omic datasets 

To investigate the target genes affected by allelic variation at rs7001340, we used two expression               

quantitative loci (eQTL) data set derived from fetal brain tissues ​(54) and adult brain tissues ​(42)​. Bulk                 

fetal cortical wall eQTL data described in a previous publication ​(54)​, was re-analyzed in this study                

https://paperpile.com/c/6yABu9/YNqhm+jfdPr
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with the following modifications: (1) here we used a linear mixed model implemented in EMMAX to                

more stringently control for population stratification, and (2) here we add 7 more donors to the analysis                 

because these donors were genotyped after the publication of the previous manuscript.            

rRNA-depleted RNA-seq data from flash frozen human fetal brain cortical wall tissues derived from              

235 donors at 14-21 PCW were used for eQTL analysis. Only genes which are expressed in more                 

than 5% of donors with at least 10 counts were included in the analysis. VST normalized expression                 

values were used as phenotypes for eQTL analysis. Genomic DNA from human fetal brain cortical               

wall tissues derived from 235 donors at 14-21 PCW was extracted. Each donor tissue was genotyped                

on a dense array (Illumina Omni 2.5+Exome) and imputed to a common reference panel (1000               

Genomes; described above). Variants were retained in the analysis if there were at least 2               

heterozygous donors and no homozygous minor allele donors, or if there were at least 2 minor allele                 

homozygous donors. Cis-eQTL analysis was performed by evaluating association between each           

gene’s expression and variants within ±1 Mb window of transcription start site of each gene by                

implementing linear mixed model association software, EMMAX ​(55)​. Candidate marker excluded IBS            

kinship matrix was generated with emmax-kin function (-v -h -s -d 10), and added as a random                 

variable into linear mixed model for association test. In addition to kinship matrix, 10 MDS components                

of genotype, sex, and first 10 PCs of gene expression were included into covariate matrix. After                

association, nominal P-values were corrected for multiple testing using the Benjamini Hochberg FDR             

correction, and associations with lower than 5% FDR threshold value were accepted as significant. 

For SPARK, we calculated LD based on parents of cases. Since donors of fetal brain tissues were                 

from multiple ancestries ​(54)​, LD between rs7001340 and SNPs in the locus were calculated based               

on those samples. Adult brain eQTL visualization used LD from 1KG EUR for eQTL in the adult brain                  

because these donors were largely European. 

To map chromatin accessible regions for cultured human neural progenitor cells and their             

differentiated neuronal progeny, we used the assay for transposase-accessible chromatin sequencing           

data (73 donors in progenitors, 61 donors in neurons) (ATAC-seq) (unpublished data from Stein lab).               

Peaks were called by MACS2 ​(56) (​https://github.com/taoliu/MACS​) with --nolambda --nomodel          

https://paperpile.com/c/6yABu9/sc8KJ
https://paperpile.com/c/6yABu9/Sw8A8
https://paperpile.com/c/6yABu9/LWSUC
https://github.com/taoliu/MACS


parameters and removed if the region was overlapped with ENCODE blacklisted regions            

(​http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacM

apabilityConsensusExcludable.bed.gz​) ​(39)​. To obtain high confidence peaks (40% of samples          

support the peak) we ran R/Bioconductor package DiffBind v2.4.8 ​(57,58) (           

https://bioconductor.org/packages/release/bioc/html/DiffBind.html​) as described in the previous report       

(27)​. ​To find differentially accessible peaks across cell type we controlled for donor differences, the               

statistical model included a regressor for cell type (progenitor or neuron) and a factor regressor of                

donor ID. 

Transcription factor binding (TFB) motifs disrupted by rs7001340 were predicted using R/Bioconductor            

package motifbreakR (v1.14.0) ​(2)    

(​https://bioconductor.org/packages/release/bioc/html/motifbreakR.html​) for TFB motifs retrieved by      

MotifDb (v1.26.0) ​(59) (​http://bioconductor.org/packages/release/bioc/html/MotifDb.html​). For each      

TFB nucleotide, disruption scores were calculated based on comparison with position probability            

metrics from the reference genome ‘BSgenome.Hsapience.UCSC.hg38’. Sequence logos were plotted          

using R/Bioconductor package seqLogo (v1.50.0) ​(3)      

(​https://bioconductor.org/packages/release/bioc/html/seqLogo.html​). 
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