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S1 Overview1

A Test-Negative Case Control (TNCC) study has been proposed to evaluate a new EVD vaccine during the2

ongoing EVD epidemic in Eastern Democratic Republic of Congo (DRC). The main text discussed a model3

of such a study: we described a population of individuals i) who heterogeneously receive a study vaccine, ii)4

some of whom subsequently exhibit symptoms of Ebola Virus Disease (EVD) or have contact with a known5

EVD case, and thus iii) are identified by either self-reporting and contact-tracing processes as part of an6

outbreak response, and finally iv) are tested for EVD, making them recruitable for a TNCC study of that7

vaccine. Particularly, we explored the potential for bias due to route of recruitment into the study, and8

due to heterogeneity in vaccine distribution. As we noted in the discussion, TNCC studies could be used to9

evaluate other kinds interventions.10

To support application of the model to other contexts, we use more general terms in this Supplement11

(Section S2). Using those terms, we provide derivations of equations quoted in the main text (Sections12

S3-S5), additional results (Section S6), and translate the model to another example (Section S7).13

S2 Generalisation of Nomenclature14

We consider a generic study intervention. The study intervention is in addition to any other outbreak control15

measures that might be ongoing. As in the main text, this study intervention is heterogeneously distributed16

at an individual level, which we represent with participation status and intervention coverage. The TNCC17

study goal is to determine the intervention efficacy.18

The main text discusses self-reporting and contact-tracing as particular recruiting routes for EVD, which19

more generally are a random primary process and a reactive secondary process, respectively; we also use these20

qualifiers to distinguish the associated exposure processes to the pathogen of interest. For both routes, we21

still assume a highly sensitive and specific test for identifying infections with the target pathogen. For EVD,22

recruitment is symptom-related, but it does not have to be for all pathogens, so here we discuss intervention23

efficacy in terms of infection rather than disease.24

The key assumptions in this model are:25

• exposure to the target pathogen is identical for all individuals26

• if infected by exposure, the probability of detection by the primary process is identical for all individuals27

• the rate of exposure to any other pathogens that could result in testing (and therefore recruitment) is28

the same for all individuals29

• all secondary recruits associated with an initial primary case have the same participation status as30

that primary case31

• the secondary transmission and recruitment process is identical for all individuals32
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S2.1 Model Diagram33

Figure S1: Model Diagram. This diagram illustrates the conceptual model of the population and recruit-

ment process, showing: how the intervention might be distributed in the population (panel (a)), with the

corresponding intervention term definitions for participating fraction, pin, and intervention coverage, L (panel

(b)); and how the primary process proceeds by finding an expected number of test-negatives, B, until finding

a test-positive case, which initiates the secondary process leading to an expected number of additional tests,

λ, of which R′′ are expected to be test-positive in the absence of the study intervention (panel (c)), with the

corresponding to summary categories of different routes to recruitment into the study (panel (d)).
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S2.2 Population Heterogeneity34

There are two types of individuals in the population: non-participating and participating. Non-participating35

individuals do not receive the study intervention. Participating individuals randomly receive the intervention36

with some probability. Aside from participation and vaccination status, individuals are identical: they have37

the same exposure risk for the target pathogen, same primary testing rate given exposure and non-exposure,38

and same secondary distribution and probability of exposing those individuals.39

In the equations that follow, we label counts of individuals corresponding to their participation and inter-40

vention status. The totals of these categories determine the population heterogeneity characteristics. Total41

numbers are:42

V , the number of participating individuals that received the intervention43

U , the number of participating individuals that did not receive the intervention44

C, of the recruitable population, those that are participating; C = V +U45

N , individuals that did not participate46

T , total potentially recruitable study population; T = C +N47

pin, the participating fraction for the study, pin =
C
T

; used as participation probability for individuals48

L, the intervention coverage in the participating population, L = V
C

; used as the probability participating49

individuals have the intervention50

S2.3 Exposure, Protection, Infection, and Recruitment51

During the outbreak, individuals {V,U,N} are potentially exposed and tested, and thus recruited in the52

study, via two routes: i) the primary route, where individuals are exposed and tested randomly, independent53

of any association with an identified case; ii) the secondary route, where individuals are exposed by and54

tested because of connection with an identified case.55

Test-positive individuals found by the primary process and those they associate with as detect by the56

secondary process have the same participation status in the model. Therefore primary test-positives from57

the participating population only interact via the secondary process with other participating individuals,58

and likewise for non-participating primary test-positives.59

Relative to transmission of the target pathogen, all infections discovered by secondary route are assumed to60

result from exposures due to the associated primary case. Primary cases are assumed to result from a random61

exposure process (i.e. exposing individuals of the different types according to the relative proportions in the62

population).63

All exposures result in infections, unless protected by the study intervention; potential infections prevented64

by other outbreak response measures (which benefit all individuals in the study population equally) are65

assumed to not be exposures in the context of the model. For both primary and secondary exposures, an66

individual that has received the intervention may avoid infection with probability corresponding to the study67

intervention efficacy. Exposed individuals who have not received the intervention become infected.68

The intervention is also assumed to have no impact on infections that are not by the target pathogen, even69

where those infections could lead to a test. Finally, neither process is assumed to observe all of the relevant70
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events (i.e., those that lead to primary or secondary recruitment) that occur, just that observation rates do71

not differ by participation status.72

S2.4 Recruitment-Related Parameters73

These real-world infection and testing processes are stochastic, and we consider the asymptotic expected74

(i.e., average) outcomes of these processes. We define the following set of parameters corresponding to75

expected counts of recruitment-related events per primary test-positive, and the probability of preventing76

infection.77

B + 1: the expected number of tests from the primary process required to find a single test-positive case; i.e.,78

on average, for B + 1 individuals tested via primary route, B are test-negative and 1 is test-positive.79

λ: the expected number of tests from the secondary process, for each case identified by the primary process.80

R′′: the expected number of test-positives in the contacts of identified cases when there is no intervention.81

E: the intervention efficacy; i.e., the probability that an individual who has received the intervention will82

avoid infection when exposed (relative to an individual without the intervention) either via the primary83

or secondary routes84

S2.5 Summary Recruitment Categories85

In addition to the participation and intervention states, we denote individuals by their routes to testing86

and test outcomes, with super- and subscripts respectively. These are summarized earlier in Fig. S1, and as87

follows:88

T ′
+
, N ′

+
,

C′

+
=V ′

+
+U ′

+

: among corresponding individuals: testing positive, recruited via primary process89

T ′′
+
, N ′′

+
,

C′′

+
=V ′′

+
+U ′′

+

: from corresponding populations, testing positive, recruited via secondary process90

T ′
−
, N ′

−
,

C′

−
=V ′

−
+U ′

−

: from corresponding populations, testing negative, recruited via primary process91

T ′′
−
, N ′′

−
,

C′′

−
=V ′′

−
+U ′′

−

: from corresponding populations, testing negative, recruited via secondary process92

S2.6 Expanded TNCC Intervention Efficacy Estimator93

The conventional TNCC efficacy estimator stratifies the recruited population into four groups, made from94

two binary distinctions: received the intervention versus not, and test-positive for the pathogen of interest95

versus test-negative. That efficacy estimator is:96

estimated

efficacy
= 1 −

# intervention, test-positive

# non-intervention, test-positive
×

# non-intervention, test-negative

# intervention, test-negative

In terms of the types of individuals defined at the end of Section S2.3, this equation becomes:97

Ê = 1 −
V ′
+ + V

′′
+

N ′
+ +N

′′
+ +U

′
+ +U

′′
+

×
N ′
− +U

′
− +N

′′
− +U

′′
−

V ′
− + V

′′
−

(S1)
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which can be thought of as two odds of having received the intervention, each conditional on the two possible98

test outcomes. We will refer to these as the test-positive odds and the test-negative odds.99

S3 Efficacy Estimator Bias100

To determine the potential bias of Ê for a TNCC study in an outbreak setting, we need to translate Eq. S1101

from being in terms of total individual counts, into the expected totals, given the study target intervention102

and outbreak conditions. We will examine each of the two odds terms in turn, then combine the results.103

S3.1 Test-Positive Odds104

Starting with the test-positive odds term, we first factorise (by C ′
+, or N ′

+), such that most terms are expressed105

as proportions:106

V ′
+ + V

′′
+

N ′
+ +N

′′
+ +U

′
+ +U

′′
+

=
C ′
+ (

V ′

+

C′

+

+
V ′′

+

C′

+

)

N ′
+ (1 +

N ′′

+

N ′

+

) +C ′
+ (

U ′

+

C′

+

+
U ′′

+

C′

+

)
(S2)

Recall we defined R′′ as the expected number of cases that would be found via the secondary route among107

individuals that had not received the study intervention (i.e., non-participating individuals or individuals108

outside of the recruitable population). The proportion
N ′′

+

N ′

+

is total number of secondary cases over the109

total number of primary cases (among non-participating individuals), which is also the average number of110

secondary cases per primary case, so we can substitute R′′ =
N ′′

+

N ′

+

. Since we have restricted the study to a111

scenario where only a single primary case exposes secondary cases, there is neither indirect protection or112

force of infection from multiple sources. Thus, amongst participating individuals (i.e. those in C), R′′ will113

be reduced on average by the probability that exposed individuals are intervention recipients and protected.114

This probability is equal to coverage, L, multiplied by the efficacy, E. Therefore,
C′′

+

C′

+

= R′′(1 − LE) in the115

participating population.116

Using these substitutions and introducing some identity multipliers, 1 =
C′′

+

C′′

+

, we can rewrite Eq. S2 as:117

C ′
+ (

V ′

+

C′

+

+
C′′

+

C′′

+

V ′′

+

C′

+

)

N ′
+ (1 +

N ′′

+

N ′

+

) +C ′
+ (

U ′

+

C′

+

+
C′′

+

C′′

+

U ′′

+

C′

+

)
=

C ′
+ (

V ′

+

C′

+

+
V ′′

+

C′′

+

R′′(1 −LE))

N ′
+ (1 +R′′) +C ′

+ (
U ′

+

C′

+

+
U ′′

+

C′′

+

R′′(1 −LE))
(S3)

Next, we show how the proportions between the counts of the participating individuals can be substituted118

to express the odds in terms of model parameters. Starting with
V ′

+

C′

+

: this is the probability of an individual119

receiving the intervention, conditional on there being an initial infection in the participating population.120

Though the exposure probabilities are the same between participating and non-participating populations, if121

LE > 0, the probability that an exposure results in an infection is lower. Given an exposure event:122

V ′
+

C ′
+

= P (received intervention ∣ is infected & participating) = P (i ∈ V ∣+, i ∈ C)

=
P (+∣i ∈ V ) × P (i ∈ V ∣i ∈ C)

P (+∣i ∈ C)
=

(1 −E) ×L

(1 −L) +L(1 −E)
=

(1 −E)L

1 −LE
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We can use the same logic for the secondary exposures: conditional on a secondary exposure that could123

result in infection, the same relationship applies. To solve for
U ′

+

C′

+

, we take the complements. Therefore,124

these four ratios are:125

V ′
+

C ′
+

=
V ′′
+

C ′′
+

=
(1 −E)L

1 −LE

U ′
+

C ′
+

=
U ′′
+

C ′′
+

=
1 −L

1 −LE (S4)

which means we can further substitute in Eq. S3:126

C ′
+ (

V ′

+

C′

+

+
V ′′

+

C′′

+

R′′(1 −LE))

N ′
+ (1 +R′′) +C ′

+ (
U ′

+

C′

+

+
U ′′

+

C′′

+

R′′(1 −LE))
=

C ′
+

V ′

+

C′

+

(1 +R′′(1 −LE))

N ′
+ (1 +R′′) +C ′

+
U ′

+

C′

+

(1 +R′′(1 −LE))

=
C ′
+
(1−E)L
1−LE

(1 +R′′(1 −LE))

N ′
+(1 +R′′) +C ′

+
1−L
1−LE

(1 +R′′(1 −LE))

=

C′

+

T ′
+

(1−E)L
1−LE

N ′

+

T ′
+

(1+R′′)

1+R′′(1−LE)
+
C′

+

T ′
+

1−L
1−LE

(S5)

Like for determining the fraction of infections in participating individuals that did or did not receive the127

intervention (Eq. S3.1), we can also use Bayes Theorem to find the relative fractions of infections that128

occurred in individuals that did or did not participate,
C′

+

T ′
+

and
N ′

+

T ′
+

:129

C ′
+

T ′+
= P (i ∈ C ∣+) =

P (+∣i ∈ C)P (i ∈ C)

P (+)
=

(1 −LE)pin
(1 − pin) + (1 −LE)pin

=
(1 −LE)pin
1 −LEpin

N ′
+

T ′+
= P (i ∈ N ∣+) = 1 − P (i ∈ C ∣+) =

1 − pin
1 −LEpin

(S6)

which means that,130

C′

+

T ′
+

(1−E)L
1−LE

N ′

+

T ′
+

(1+R′′)

1+R′′(1−LE)
+
C′

+

T ′
+

1−L
1−LE

=
1 −LEpin
1 −LEpin

(1 −LE)pin
(1−E)L
1−LE

(1 − pin)
(1+R′′)

1+R′′(1−LE)
+ (1 −LE)pin

1−L
1−LE

=
pin(1 −E)L

(1 − pin)
(1+R′′)

1+R′′(1−LE)
+ pin(1 −L)

(S7)

and therefore,131

V ′
+ + V+

N ′
+ +N+ +U ′

+ +U+
=

pin(1 −E)L

(1 − pin)
(1+R′′)

1+R′′(1−LE)
+ pin(1 −L)

(S8)

In conventional TNCC studies there is no secondary recruitment. If secondary recruitment were eliminated132

under outbreak circumstances, that would imply that λ → 0, which also means that R′′ → 0. During133

outbreaks, the secondary process would still occur as part of the response (i.e. there would both testing and134

case-finding), but the people identified would not be recruited. Under that limit:135
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lim
R′′→0

1 +R′′

1 +R′′(1 −LE)
= 1

lim
R′′→0

Lpin(1 −E)

(1 − pin)
1+R′′

1+R′′(1−LE)
+ pin −Lpin

=
Lpin(1 −E)

1 −Lpin
(S9)

which suggests a useful re-arrangement of the final form of the test-positive odds, so it has a clear separation136

of the terms which appear in the unbiased estimator (i.e. primary recruiting only) and the remaining137

factors:138

Lpin(1 −E)

(1 − pin)
1+R′′

1+R′′(1−LE)
+ pin(1 −L)

=
Lpin(1 −E)

(1 − pin)
1+R′′

1+R′′(1−LE)
+ pin −Lpin + 1 − 1

obtain 1 −Lpin term to factor out... =
Lpin(1 −E)

(1 − pin)
1+R′′

1+R′′(1−LE)
− (1 − pin) + (1 −Lpin)

factor other term... =
Lpin(1 −E)

(1 −Lpin) + (1 − pin) (
1+R′′

1+R′′(1−LE)
− 1)

simplify other term... =
Lpin(1 −E)

(1 −Lpin) + (1 − pin) (
LER′′

1+R′′(1−LE)
)

factor out target terms... =
Lpin(1 −E)

1 −Lpin
[1 +

ER′′

1 +R′′(1 −LE)

L(1 − pin)

1 −Lpin
]

−1

(S10)

In Eq. S10, we now have only terms that describe the intervention (participation and coverage probabilities,139

pin and L, and efficacy E) and epidemiology (R′′).140

S3.2 Test-Negative Odds141

We assume that the testing criteria for the secondary process is not affected by the presence of the inter-142

vention. For example, a contact-tracing-related criteria might be principally about high-risk interactions143

rather than particular symptoms, or the symptom threshold might be sufficiently relaxed that almost all144

contacts meet it. Similarly, a purely geographical criteria would be unaffected by presence or absence of145

the intervention. Thus, in our model all the prevented secondary infections (via intervention efficacy E) are146

still recruited by the secondary process as test-negatives. This is a bounding assumption; see the end of this147

section for relaxing this assumption.148

Turning to the test-negative odds, we first replace the primary test-negatives by the contribution from B,149

the average number of test-negatives per test-positive via the primary route. Given that definition, the total150

number of primary test-negatives is T ′− = BT
′
+. Because the intervention has no effect on the causes that lead151

to testing negative via the primary route, the representation of individuals follows their proportions in the152

population:153

N ′
− +U

′
− +N

′′
− +U

′′
−

V ′
− + V

′′
−

=
BT ′+(1 −Lpin) +N

′′
− +U

′′
−

BT ′+Lpin + V
′′
−

(S11)

As with the test-positives odds, we can factorise and introduce identity multiples to re-arrange into terms154

that we can then use Bayes Theorem to replace with model parameters:155
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BT ′+(1 −Lpin) +N
′′
− +U

′′
−

BT ′+Lpin + V
′′
−

=
B(1 −Lpin) +

1
T ′
+

(N ′′
− +U

′′
− )

BLpin +
V ′′

−

T ′
+

=
B(1 −Lpin) + (

N ′

+

T ′
+

N ′′

−

N ′

+

+
C′

+

T ′
+

U ′′

−

C′

+

)

BLpin +
C′

+

T ′
+

V ′′

−

C′

+

(S12)

We can use the participating and non-participating fractions of primary test-positives,
C′

+

T ′
+

and
N ′

+

T ′
+

, from156

refactoring the test-positive odds (Eq. S6).157

Amongst non-participating individuals, on average λ −R′′ of recruits from the secondary route will be test-158

negative. This means that
N ′′

−

N ′

+

= λ −R′′.159

This definition also implies that the exposed proportion is pt =
R′′

λ
because R′′ individuals are infected per λ160

secondary individuals. The complementary non-exposed proportion is therefore 1 − pt =
λ−R′′

λ
. This value is161

like a transmission probability, though that interpretation should be used with caution: the denominator is162

determined by the secondary observation process, and thus the proportion may not clearly translate to the163

biological process probability.164

Also by definition, amongst participating individuals, only 1 − LE of the exposed individuals are infected,

therefore:
C ′′
−

C ′
+

= (1 − pt(1 −LE))λ = λ −R′′
(1 −LE)

We again use Bayes Theorem to translate these ratios into model parameter expressions.165

U ′′
−

C ′′
−

= P (is unvaccinated ∣ is not infected & participating) = P (i ∈ U ∣−, i ∈ C) =
P (−∣i ∈ U)P (i ∈ U ∣i ∈ C)

P (−∣i ∈ C)

=

λ−R′′

λ
(1 −L)

λ−R′′

λ
(1 −L) +L (λ−R

′′

λ
+ R′′

λ
E)

=
(λ −R′′)(1 −L)

λ −R′′(1 −LE)

V ′′
−

C ′′
−

= 1 − P (i ∈ U ∣−, i ∈ C) =
(λ − (1 −E)R′′)L

λ − (1 −LE)R′′

U ′′
−

C ′
+

=
U ′′
−

C ′′
−

C ′′
−

C ′
+

= (λ −R′′
)(1 −L)

V ′′
−

C ′
+

= (λ − (1 −E)R′′
)L

(S13)

Substituting these into the for the appropriate ratios, we obtain:166

B(1 −Lpin) + (
N ′

+

T ′
+

N−

N ′

+

+
C′

+

T ′
+

U−
C′

+

)

BLpin +
C′

+

T ′
+

V−
C′

+

=
B(1 −Lpin) + (

1−pin
1−LEpin

(λ −R′′) +
(1−LE)pin
1−LEpin

(λ −R′′)(1 −L))

BLpin +
(1−LE)pin
1−LEpin

(λ − (1 −E)R′′)L

N ′
− +U

′
− +N− +U−
V ′
− + V−

=
B(1 −Lpin) + (1 −Lpin

1−LE
1−LEpin

) (λ −R′′)

BLpin +Lpin
1−LE

1−LEpin
(λ −R′′ +ER′′)

(S14)

As in Section S3.1, for the conventional TNCC assumptions, λ → 0 and R′′ → 0. Again, it is not that167

the secondary process ceases, but just that recruitment via that route is disallowed. Enforcing those con-168

straints:169
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lim
λ→0

B(1 −Lpin) + (1 −Lpin
1−LE

1−LEpin
) (λ −R′′)

BLpin +Lpin
1−LE

1−LEpin
(λ −R′′ +ER′′)

=
B(1 −Lpin) + (1 −Lpin

1−LE
1−LEpin

)0

BLpin +Lpin
1−LE

1−LEpin
0

=
1 −Lpin
Lpin

(S15)

As with test-positives odds, we can refactor in terms of the conventional TNCC limit:170

B(1 −Lpin) + (1 −Lpin
1−LE

1−LEpin
) (λ −R′′)

BLpin +Lpin
1−LE

1−LEpin
(λ −R′′ +ER′′)

=
1 −Lpin
Lpin

B +
1−Lpin

1−LE
1−LEpin

1−Lpin
(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′ +ER′′)

=
1 −Lpin
Lpin

B +
1−LEpin−Lpin(1−LE)
(1−Lpin)(1−LEpin)

(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′ +ER′′)

=
1 −Lpin
Lpin

B +
1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′ +ER′′)
(S16)

In Eq. S16, we now have only terms that describe the intervention (pin, L, and E) and epidemiology171

(R′′, λ, and B). Note that this term includes more of the model parameters than the test-positive odds172

(Eq. S10).173

S3.3 Relaxing Assumption that Prevented Infections Remain Secondary174

Recruits175

Earlier, we assumed that the secondary recruitment process was unperturbed by the study intervention. For176

a secondary process that is, for example, purely geographical because it concerns a pathogen that is highly177

asymptomatic (e.g., neighbor-household testing for dengue), this assumption is consistent. Where it becomes178

less clearly acceptable as a simplification, is if there remains some disease- or symptom-based component to179

secondary recruitment.180

In the main text, we focus on a vaccine study for EVD, where the primary process was self-reporting181

with multiple EVD-like symptoms leading to testing. The secondary process is nominally contact-tracing182

combined with a high-fever. We assumed that high-fever would almost always be present for the contacts183

that avoided EVD infection because of the vaccine. In reality there would be some attack rate less than184

100%.185

If we define the proportion of people meeting a symptom-based component of the secondary process as α186

and ignore the zero-bias term (Eq. S15) as a coefficient, then Eq. S16 becomes:187

test-negative odds ∝
B +

1−Lpin−LEpin+L
2Epin

1−Lpin−LEpin+L2Ep2
in

(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′ +EαR′′)
(S17)

That is, of all the potential secondary recruits that could be added to test-negatives due to prevention of188

infection, only some exhibit the additional criteria. Note that there is no impact of relaxing this assumption189

on the test-positive odds.190

If α → 1, i.e. everyone meets this extra criteria, we get Eq. S16. As α → 0, the denominator decreases,191

increasing the test-negative odds overall, and in turn reducing the estimated efficacy. When α = 0:192
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test-negative odds ∝
B +

1−Lpin−LEpin+L
2Epin

1−Lpin−LEpin+L2Ep2
in

(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′)
(S18)

In the case of pin = 1, this reduces to unity. More generally,193

Lpin ≤ L Ô⇒ 1 −Lpin ≥ 1 −L Ô⇒
1 −L

1 −Lpin
≤ 1

Ô⇒ 1 ≥ pin
1 −L

1 −Lpin
Ô⇒ LE ≥ LEpin

1 −L

1 −Lpin

Ô⇒ 1 −LE ≤ 1 −LEpin
1 −L

1 −Lpin
Ô⇒ 1 −LE ≤

1 −Lpin −LEpin −L
2Epin

1 −Lpin

Ô⇒
1 −LE

1 −LEpin
≤

1 −Lpin −LEpin −L
2Epin

(1 −LEpin)(1 −Lpin)

Ô⇒ B +
1 −LE

1 −LEpin
(λ −R′′

) ≤ B +
1 −Lpin −LEpin −L

2Epin
(1 −LEpin)(1 −Lpin)

(λ −R′′
)

Ô⇒ 1 ≤
B +

1−Lpin−LEpin−L
2Epin

(1−LEpin)(1−Lpin)
(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′)
(S19)

This means that without any contribution from α, test-negative odds biases increasingly towards underesti-194

mation as participation decreases. As α → 1, this effect is counteracted, but can in turn lead to overestimation195

of efficacy.196

S4 Total Estimator Bias & Limiting Scenarios197

Combining the test-positives odds and test-negatives odds:198

Ê = 1 −
V ′
+ + V

′′
+

N ′
+ +N

′′
+ +U

′
+ +U

′′
+

N ′
− +U

′
− +N

′′
− +U

′′
−

V ′
− + V

′′
−

= 1 −
Lpin(1 −E)

1 −Lpin
[1 +

ER′′

1 +R′′(1 −LE)

L(1 − pin)

1 −Lpin
]

−1
1 −Lpin
Lpin

B +
1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′ +ER′′)

= 1 − (1 −E) [1 +
ER′′

1 +R′′(1 −LE)

L(1 − pin)

1 −Lpin
]

−1 B +
1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

(λ −R′′)

B + 1−LE
1−LEpin

(λ −R′′ +ER′′)
(S20)

This suggests a different factorization:199

Ê = 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
ER′′

λ
λ
B+1

(B + 1)

1 + R′′

λ
λ
B+1

(B + 1)(1 −LE)

L(1 − pin)

1 −Lpin

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

λ
B+1

B+1
B

(1 − R′′

λ
)

1 + 1−LE
1−LEpin

λ
B+1

B+1
B

(1 − R′′

λ
+ER′′

λ
)

(S21)

We can define secondary test-positive fraction, pt =
R′′

λ
, the negative proportion of primary alerts, f− =

B
B+1

,200

and relative rate of secondary recruitment to primary recruitment, ρ = λ
B+1

. Noting that B + 1 = (1 − f−)
−1

201

This yields:202
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Ê = 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
E ptρ

1−f−

1 + ptρ
1−f−

(1 −LE)

L(1 − pin)

1 −Lpin

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

(1 − pt)

1 + 1−LE
1−LEpin

ρ
f−

(1 − pt(1 −E))
(S22)

We use this framing for all the main text results. This formulation highlights the important relative values203

within the model, while still maintaining terms that can be reasoned about and potentially measured. In204

this framing Ê is still a function of six variables, i.e. {E,L, pin,R
′′, λ,B} versus {E,L, pin, pt, ρ, f−}.205

In the following subsections, we show limiting conditions for the estimator with respect to the assorted206

parameters.207

S4.1 True efficacy, E, limits208

As the intervention tends toward either doing nothing (E → 0) or perfect protection (E → 1), the estimator209

bias tends to vanish.210

lim
E→0

Ê = 1 − [1]
−1

1 + 1−Lpin
1−Lpin

ρ
f−

(1 − pt)

1 + ρ
f−

(1 − pt)
= 1 − 1 = 0

lim
E→1

Ê = 1 − 0 (⋯) = 1 (S23)

S4.2 Participating fraction, pin, limits211

lim
pin→0

Ê = 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
LE ptρ

1−f−

1 + ptρ
1−f−

(1 −LE)

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + 1

1
ρ
f−

(1 − pt)

1 + 1−LE
1

ρ
f−

(1 − pt(1 −E))

= 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 + ptρ
1−f−

(1 −LE)

1 + ptρ
1−f−

(1 −LE)
+

LE ptρ
1−f−

1 + ptρ
1−f−

(1 −LE)

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + ρ

f−
(1 − pt)

1 + (1 −LE)
ρ
f−

(1 − pt(1 −E))

= 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 + ptρ
1−f−

1 + ptρ
1−f−

(1 −LE)

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + ρ

f−
(1 − pt)

1 + (1 −LE)
ρ
f−

(1 − pt(1 −E))

= 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 + ptρ
1−f−

1 + ptρ
1−f−

(1 −LE)

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + ρ

f−
(1 − pt)

1 + (1 −LE)
ρ
f−

(1 − pt(1 −E))

= 1 − (1 −E)
1 + ptρ

1−f−
(1 −LE)

1 + ptρ
1−f−

1 + ρ
f−

(1 − pt)

1 + (1 −LE)
ρ
f−

(1 − pt(1 −E)) (S24)
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lim
pin→1

Ê = 1 − (1 −E) [1]
−1 B + [1 + L

1−L
0] (λ −R′′)

B + (λ −R′′ +ER′′)

= 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 + 0
E ptρ

1−f−

1 + ptρ
1−f−

(1 −LE)

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + 1−L−LE+L2E

1−L−LE+L2E
ρ
f−

(1 − pt)

1 + 1−LE
1−LE

ρ
f−

(1 − pt(1 −E))

= 1 − (1 −E)
1 + ρ

f−
(1 − pt)

1 + ρ
f−

(1 − pt(1 −E))

= 1 − (1 −E)
B + λ −R′′

B + λ −R′′ +ER′′

= 1 − (1 −E)
1 − R′′

B+λ

1 − R′′

B+λ
(1 −E)

(S25)

The final factorization in Eq. S25 shows that, in the limit of perfect alignment of participation and recruit-212

ment, the intervention coverage, L, is removed, and the bias depends only on the true efficacy, E, and a213

combination of epidemiological parameters: R′′

B+λ
. This relationship can be inverted; which allows us to214

determine the true efficacy in terms of the estimator value and other parameters:215

1 − Ê = (1 −E)
1 − R′′

B+λ

1 − R′′

B+λ
(1 −E)

(1 − Ê)(1 −
R′′

B + λ
(1 −E)) = (1 −E)(1 −

R′′

B + λ
)

(1 − Ê) = (1 −E) [1 −
R′′

B + λ
+ (1 − Ê)

R′′

B + λ
]

(1 −E) = (1 − Ê) [1 − Ê
R′′

B + λ
]

−1

E = 1 − (1 − Ê) [1 − Ê
R′′

B + λ
]

−1

E − Ê = (1 − Ê)
⎛

⎝
1 − [1 − Ê

R′′

B + λ
]

−1
⎞

⎠

E − Ê = −(1 − Ê)
⎛

⎝

Ê R′′

B+λ

1 − Ê R′′

B+λ

⎞

⎠
(S26)

R′′

B+λ
corresponds to a potentially measurable quantity; recall that in the model, R′′ is the expected number of216

additional test-positives that are identified via the secondary process in a group without the intervention, and217

B +λ is all the other tests (primary negatives and all secondary tests) per primary test-positive. Thus, R′′

B+λ
218

is the fraction of secondary test-positives out of all non-index case-finding tests, when measuring in a non-219

intervention group. This value could be estimated from a comparable population without the intervention,220

or an upper limit could be estimated from data within the study population itself: the expected number221

of secondary cases in the intervention population is R′′(1 −LE), so the measured non-primary test-positive222

fraction would be reduced maximally by a factor (1 − L) when the efficacy is perfect. Note that because223

this factor only has B + λ, we do not need to distinguish primary versus secondary test-negatives. If a224

test-negative from λ was mistakenly assigned to B (or vice versa), that would not change this factor.225

Thus, if a study were able to achieve pin ≈ 1, it only need to be able to distinguish between primary and226

secondary test-positives to correctly bound the estimator.227
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S4.3 Secondary Case Recruitment, pt, limits228

If we consider secondary case limits, that is what proportion of secondary recruiting is test-positive, then we229

obtain:230

lim
pt→0

Ê = 1 − (1 −E) [1 +
0

1 + 0

L(1 − pin)

1 −Lpin
]

−1 1 + 1−Lpin−LEpin+L
2Epin

1−Lpin−LEpin+L2Ep2
in

ρ
f−

1 + 1−LE
1−LEpin

ρ
f−

= 1 − (1 −E)
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

1 + 1−LE
1−LEpin

ρ
f−

lim
pt→1

Ê = 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
E ρ

1−f−

1 + ρ
1−f−

(1 −LE)

L(1 − pin)

1 −Lpin

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

0

1 + 1−LE
1−LEpin

ρ
f−
E

= 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
E ρ

1−f−

1 + ρ
1−f−

(1 −LE)

L(1 − pin)

1 −Lpin

⎤
⎥
⎥
⎥
⎥
⎦

−1

1

1 + 1−LE
1−LEpin

ρ
f−
E

(S27)

One way to interpret pt → 1 is that transmission probability (conditional on high risk contact) is going up.231

Another way to think about it is λ coming down to meet R′′; i.e., the decision about whether to test a232

contact or not becoming more accurately linked to whether they were infected.233

S4.4 Lower Limit on Secondary Relative Recruiting, ρ234

As primary recruiting increasingly outweighs secondary recruiting (including both increasing primary re-235

cruitment and disallowing secondary recruitment), ρ→ 0. In this limit:236

lim
ρ→0

Ê = 1 − (1 −E) [1 +
0

1 + 0

L(1 − pin)

1 −Lpin
]

−1 1 + 1−Lpin−LEpin+L
2Epin

1−Lpin−LEpin+L2Ep2
in

0
f−

(1 − pt)

1 + 1−LE
1−LEpin

0
f−

(1 − pt(1 −E))

= 1 − (1 −E)[1]−1
1

1
= E (S28)

Thus, for sufficiently high rate of primary recruitment leading to test-negatives, the bias goes to 0.237

S5 Translation of Limits to Recruitment Constraints238

S5.1 Attempting to Limit Recruitment to Participants Only239

Figures S2-S10 show the general response of the estimator to varying factors in the model. Each plot shows240

pin ∈ {0.01,0.1,0.25,0.5,0.75,0.9,1} (columns) and pt ∈ {0.01,0.1,0.25,0.5,0.75,0.9,1} (rows). Each plot241

shows one of the combinations of ρ ∈ {1/9,1/3,1} and f− ∈ {0.5,0.75,0.9}; ρ is indicated at the top of each242

plot, f− on the right side.243

These plots show some trends under specific conditions. In general, increasing participation decreases bias244

range, though not absolutely (e.g., ρ = 1/9, pt = 1/4, f− = 0.75). Increasing coverage can shift bias towards245

underestimation or overestimation, depending pt.246
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Figure S2: General Bias Sensitivity, 1 of 9: These series of plots show general sensitivity of the TNCC

estimator to all of the model parameters. For each plot, the rightmost column corresponds to very high

(99%) participation fraction, which indicates the minimal bias surface when the study manages to maximize

participation. Recall, ρ = λ
B+1

is the expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected

fraction of secondary recruits that test positive when no intervention is present; and f− =
B
B+1

is the expect

fraction of primary recruits that are test-negative. In this panel, ρ = 1/9 and f− = 0.5.
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Figure S3: General Bias Sensitivity. 2 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− =
B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1/9

and f− = 0.75.
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Figure S4: General Bias Sensitivity. 3 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− =
B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1/9

and f− = 0.9.

18



Figure S5: General Bias Sensitivity. 4 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− =
B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1/3

and f− = 0.5.

19



Figure S6: General Bias Sensitivity. 5 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− =
B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1/3

and f− = 0.75.
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Figure S7: General Bias Sensitivity. 6 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− =
B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1/3

and f− = 0.9.
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Figure S8: General Bias Sensitivity. 7 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− = B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1

and f− = 0.5.
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Figure S9: General Bias Sensitivity. 8 of 9: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− = B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1

and f− = 0.75.
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Figure S10: General Bias Sensitivity.: Recall, ρ = λ
B+1

is the expected ratio of secondary to primary

recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test positive when no intervention is

present; and f− = B
B+1

is the expect fraction of primary recruits that are test-negative. In this panel, ρ = 1

and f− = 0.9.
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S5.2 Attempting to Limit to Primary Recruitment Only247

An alternative approach to controlling the bias is to restrict to primary recruitment only. If we assume248

that the study excludes secondary recruitment perfectly for test-positives (e.g. because they are extensively249

monitored) but incompletely excludes secondary recruitment for test-negatives (e.g. because data for them250

is incomplete) then the full estimator equation:251

Ê = 1 − (1 −E)

⎡
⎢
⎢
⎢
⎢
⎣

1 +
E ptρ

1−f−

1 + ptρ
1−f−

(1 −LE)

L(1 − pin)

1 −Lpin

⎤
⎥
⎥
⎥
⎥
⎦

−1
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

(1 − pt)

1 + 1−LE
1−LEpin

ρ
f−

(1 − pt(1 −E))

will lose the test-positive bias contribution, because it goes to 1 (note that for any non-zero pt, this term is252

less than 1):253

⎡
⎢
⎢
⎢
⎢
⎣

1 +
E 0ρ

1−f−

1 + 0ρ
1−f−

(1 −LE)

L(1 − pin)

1 −Lpin

⎤
⎥
⎥
⎥
⎥
⎦

−1

= 1 (S29)

So the overall bias becomes:254

Ê = 1 − (1 −E)
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

βρ
f−

(1 − pt)

1 + 1−LE
1−LEpin

βρ
f−

(1 − pt(1 −E))
(S30)

where β ∈ (0,1) is the exclusion failure probability; β = 0 is perfect exclusion of secondary test-negatives (in255

which case the test-negative term also reduces to 1) while β = 1 implies that no secondary test-negatives are256

excluded. Note that this factor is simply reducing ρ in the test-negative odds term. Thus, we can drop β257

and instead reduce the range we consider for ρ. The error expression for this scenario is:258
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E − Ê = E − 1 + (1 −E)
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

(1 − pt)

1 + 1−LE
1−LEpin

ρ
f−

(1 − pt(1 −E))

= −(1 −E)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −
1 + 1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

(1 − pt)

1 + 1−LE
1−LEpin

ρ
f−

(1 − pt(1 −E))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −(1 −E)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1−LE
1−LEpin

ρ
f−

(1 − pt(1 −E)) −
1−Lpin−LEpin+L

2Epin
1−Lpin−LEpin+L2Ep2

in

ρ
f−

(1 − pt)

1 + 1−LE
1−LEpin

ρ
f−

(1 − pt(1 −E))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
−(1 −E)

ρ
f−

(1 −Lpin)

(1 −Lpin)(1 −LE)(1 − pt(1 −E)) − (1 −Lpin −LEpin +L
2Epin) (1 − pt)

(1 −LEpin) + (1 −LE)
ρ
f−

(1 − pt(1 −E))

=
−(1 −E)

ρ
f−

(1 −Lpin)

(1 −Lpin −LE +L2Epin)(1 − pt(1 −E)) − (1 −Lpin −LEpin +L
2Epin) (1 − pt)

(1 −LEpin) + (1 −LE)
ρ
f−

(1 − pt(1 −E))

=
−(1 −E)

ρ
f−

(1 −Lpin)

(1 −Lpin −LE +L2Epin)Ept + −LE(1 − pt) +LEpin (1 − pt)

(1 −LEpin) + (1 −LE)
ρ
f−

(1 − pt(1 −E))

=
−(1 −E)

ρ
f−

(1 −Lpin)

(1 −Lpin −LE +L2Epin)Ept −LE(1 − pt)(1 − pin)

(1 −LEpin) + (1 −LE)
ρ
f−

(1 − pt(1 −E))

=
−(1 −E)E ρ

f−

(1 −Lpin)

(1 −Lpin)(1 −LE)pt −L(1 − pt)(1 − pin)

(1 −LEpin) + (1 −LE)
ρ
f−

(1 − pt(1 −E)) (S31)

Because pin remains in the equation, in multiple places, the participating fraction plays an important role259

in bias. If participation is high, and for the case of pin → 1, then we can then recover:260

lim
pin→1

E − Ê =
−(1 −E)E ρ

f−

(1 −L)

(1 −L)(1 −LE)pt −L(1 − pt)(1 − 1)

(1 −LE) + (1 −LE)
ρ
f−

(1 − pt(1 −E))

= −(1 −E)E
ρ

f−

pt
1 + ρ

f−
(1 − pt(1 −E))

= −(1 −E)E
pt

1 + f−
ρ
− pt(1 −E)) (S32)

which is the same error as if we had just been able to control pin → 1. This suggests that if the study261

could mostly manage heterogeneity in the recruited population, but likely could not exclude secondary262

test-negatives, then including all secondary cases does not affect the magnitude of bias.263

Figures S11-S19 show the response of the estimator to varying factors when secondary test-264

positives are excluded. Each plot shows pin ∈ {0.01,0.1,0.25,0.5,0.75,0.9,1} (columns) and pt ∈265

{0.01,0.1,0.25,0.5,0.75,0.9,1} (rows). Each plot shows one of the combinations of ρ ∈ {1/9,1/3,1} and266

f− ∈ {0.5,0.75,0.9}; ρ is indicated at the top of each plot, f− on the right side.267

In general, these plots show the same trends as Figures S2-S10, with lower bias magnitude and tendency to268

shift towards underestimation.269
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Figure S11: Bias Sensitivity Without Secondary Test-Positives, 1 of 9: These series of plots show

sensitivity of the TNCC estimator which excludes secondary test-positives to all of the model parameters.

For each plot, the rightmost column corresponds to very high (99%) participation fraction, which indicates

the minimal bias surface when the study manages to maximize participation. Recall, ρ = λ
B+1

is the expected

ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test

positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that are

test-negative. In this panel, ρ = 1/9 and f− = 0.5.
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Figure S12: Bias Sensitivity Without Secondary Test-Positives. 2 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1/9 and f− = 0.75.
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Figure S13: Bias Sensitivity Without Secondary Test-Positives. 3 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1/9 and f− = 0.9.
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Figure S14: Bias Sensitivity Without Secondary Test-Positives. 4 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1/3 and f− = 0.5.
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Figure S15: Bias Sensitivity Without Secondary Test-Positives. 5 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1/3 and f− = 0.75.
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Figure S16: Bias Sensitivity Without Secondary Test-Positives. 6 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1/3 and f− = 0.9.
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Figure S17: Bias Sensitivity Without Secondary Test-Positives. 7 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1 and f− = 0.5.
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Figure S18: Bias Sensitivity Without Secondary Test-Positives. 8 of 9: Recall, ρ = λ
B+1

is the

expected ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that

test positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that

are test-negative. In this panel, ρ = 1 and f− = 0.75.
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Figure S19: Bias Sensitivity Without Secondary Test-Positives.: Recall, ρ = λ
B+1

is the expected

ratio of secondary to primary recuits; pt = R
′′/λ is the expected fraction of secondary recruits that test

positive when no intervention is present; and f− = B
B+1

is the expect fraction of primary recruits that are

test-negative. In this panel, ρ = 1 and f− = 0.9.
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S6 Calculation of Coverage, L, and Participation, pin270

In addition to parameters associated with epidemiology and response activities (B, λ, and R′′), the values of L271

and pin are required to determine what level of bias may be present. Our model proposes a population where272

there are three groups, non-participators, and participators that receive the intervention or not. If we have273

an estimate for the size of the total recruitable population, we can use measures taken during the intervention274

distribution to estimate these values. Alternatively, additional data could be collected when testing recruits275

to estimate these values. The estimates proposed hereafter are not definitive; in addition to assuming our276

model of heterogeneity is a sufficiently useful approximation, they make further strong assumptions about277

behaviour around intervention uptake. However, as estimates they are potentially informative about the278

limits of pin and L within the model framework we have proposed.279

S6.1 Measures During Intervention Distribution280

During distribution of the intervention, one could count the number of people receiving the intervention281

(V ) and the number ineligible (U∗). From those values we can compute the crude minimum and maximum282

values of L and pin (where max(L) corresponds to min(pin), and vice versa).283

L ∈ (
V

T
,

V

V +U∗
)

pin ∈ (0,1 −
V +U∗

T
) (S33)

In the model, we make no assumptions of how non-intervention occurs in the participating population,284

just that it occurs randomly within that group. Thus the ineligible count represents the minimum non-285

intervention amongst the participating population (the upper limit of L); there may be other sources (e.g.,286

participants are unavailable on the day offered). Potentially, when distributing the intervention, participants287

could be asked about members of their household, neighbors, etc. that wanted to get the intervention,288

but were unable to do so, but this number would also have many uncertainties (e.g. duplicate reporting,289

reporting individuals that do receive the intervention at a different time or place).290

If the study intervention has multiple steps (e.g. a two-dose vaccine, repeat application of vector-control291

insecticides), then the decrease in coverage between steps could be informative about the participation rate,292

pin. If we assume not receiving the intervention is due to a mix of short-term (e.g. ill that day) and long-term293

(e.g. too young to be eligible) effects, then we can potentially further constrain L and pin. In the following294

we assume that: i) long-term ineligibles only present themselves at the first step (though they may also295

not), ii) short-term ineligibles present at the same rate in the subsequent steps, and iii) individuals that296

did not present at earlier steps will also not present later. If we apply these assumptions to a two-step297

intervention, and we call unobserved long-term ineligibles I0, the long-term ineligibles that appear initially298

are I1, and the intervention recipients (V ) and short-term ineligibles that present (U∗) or not (U) at each299

stage (V1, V2, U∗1, U∗2, U1, U2), then the following relations hold.300

We have six observed pieces of information: the total population (T ), the number given the intervention301

versus short term ineligible at both steps (V1, V2, U∗1, U∗2), and the number of long-term ineligibles at the302

first step (I1).303

We know that at the second intervention step, we have only people that got vaccinated in the previous step,304

no new long term ineligibles, and the breakdown of short term ineligibles versus those that receive the second305

step. So:306
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V1 = U2 +U
∗
2 + V2 Ô⇒ U2 = V1 − V2 −U

∗
2 (S34)

If we assume that the division between presenting versus not presenting for short-term ineligibles is the same307

for both steps, then:308

U∗
2

U2 +U∗
2

=
U∗
1

U1 +U1∗
Ô⇒

U∗
2

U2 +U∗
2

(U1 +U1∗) = U
∗
1

Ô⇒
U∗
2

U2 +U∗
2

U1 = U
∗
1 (1 −

U∗
2

U2 +U∗
2

)

Ô⇒ U∗
1

V1 − V2 −U
∗
2

U∗
2

= U1 (S35)

For the first distribution of the intervention, we assume that the ratio of short- and long-term ineligibles309

presenting is the same as those not presenting:310

U∗
1

U∗
1 + I1

=
U1

U1 + I0
Ô⇒

U∗
1

U∗
1 + I1

(U1 + I0) = U1

Ô⇒
U∗
1

U∗
1 + I1

I0 = U1 (1 −
U∗
1

U∗
1 + I1

)

Ô⇒ I0 = U1
I1
U∗
1

= I1
V1 − V2 −U

∗
2

U∗
2 (S36)

Finally, the pieces must add up to the total population, and therefore:311

C = V1 +U
∗
1 + I1 +U1 + I0

= V1 +U
∗
1 (1 +

V1 − V2 −U
∗
2

U∗
2

) + I1 (1 +
V1 − V2 −U

∗
2

U∗
2

)

= V1 +
V1 − V2
U∗
2

(U∗
1 + I1)

T = C +N

N = T −C

= T − V1 −
V1 − V2
U∗
2

(U∗
1 + I1) (S37)

So using these assumptions, we can estimate the coverage and the participating fraction:312

L =
V

C
=

V2

V1 +
V1−V2

U∗

2
(U∗

1 + I1)

pin =
C

T
=
V1 +

V1−V2

U∗

2
(U∗

1 + I1)

T
(S38)

Both of these equations consist only of the measured values. Since the model is an approximation, there313

may be other effects, but these relations can provide a useful guide to the value of the study parameters that314

contribute to bias.315
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S7 Alternative Scenario Translation316

In the main text, we described applying this model to evaluating a novel vaccine during an Ebola outbreak,317

but noted in the discussion that the approach could be generically applicable. The previous sections outline318

the model in generic terms. Here we provide an example translation of that generalisation to another case:319

a vector control intervention for dengue.320

In this scenario, we consider an intervention like indoor residual spraying, applied to urban households on321

a block basis (i.e. set of contiguous households, determined by street intersections) ahead of the dengue322

season. Some blocks would get no coverage (i.e. be amongst the non-participating population), while others323

would receive coverage at some level (with non-coverage corresponding to e.g. availability to let treatment324

teams into house on that day or presence of children under some age).325

Later, during the dengue season, people in the study population would seek healthcare with symptoms that326

would lead to testing for dengue, corresponding to the primary process. However, because dengue is fre-327

quently asymptomatic, the secondary process would be to test individuals in the primary cases household and328

adjacent households. Instead of a contacts-based secondary route, there is geospatial secondary route.329

Whether a TNCC study would be ideal for this scenario is certainly a topic for debate. However, it is possible330

to frame this scenario and other potential pathogen spread and surveillance processes in the same terms we331

have introduced in this analysis.332
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