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A Analytical Results

In this section, we provide proofs and derivations for the results in the main paper.

A.1 Proof of Eq. 3 and Eq. 4

Our goal is to relate the overall analysis model, P(D* = 1|Z,S = 1), to parameters in the
conceptual model in Eq. 1. We have the following
P(D*=1,8=1|z) > ,P(D*=1,S=1,D=d|Z)
P(S=1|2) B >y P(S=1,D=4d|2)
YuPD*=18=1,D=d,2)P(S=1|D=4d,Z)P(D =d|2)
- S P(S=1|D=d,Z2)P(D = d|Z)
Now, under our model assumptions and notation in Eq. 2, P(D* =1|S=1,D=1,7) = ¢(Z)
and P(D*=1|S=1,D=0,Z) =0. We have
c(Z)P(S=1D=1,Z)P(D =1|2)
PS=1D=1,Z2)P(D=1|Z)+ P(S=1D=0,Z)P(D =0|2)

P(D*=1|Z,S=1) =

P(D*=1Z,8=1) =

We also note that r(Z) = %, so we can simplify the above expression to

o(Z)yr(Z)P(D =1|2) _ )yr(Z2)P(D =1|2)

PIDT =125 =0 = b =112) + PO =012) ~ 1+ [1(2)— 1] P(D=1]2)

or equivalently,

P(D*=1|Z,5=1)
co(2)yr(Z)—-P(D*=1Z,S=1)[r(Z) — 1]
Therefore, we can directly express the analysis model in terms of different contributions to
the conceptual model. This gives us the expression in Eq. 8. c¢(Z) reflects contributions of

misclassification and r(Z) reflects contributions of the sampling mechanism. Notably, if we set
r(Z) =1, we have

P(D=1|2) =

P(D*=11Z,5=1)=c(Z)P(D =1|%Z)
and P(D* =1|Z,S =1) = P(D =1|2) if ¢(Z) is also equal to 1.

Now, suppose we model D|Z using a logistic regression as in Eq. 1. In this case, we
have that
. [ P(D*=1|Z,S=1)
logit
co(2)yr(Z)— P(D*=1Z,S =1)[r(Z) — 1]
P(D*=1|Z,5=1)
c(2)r(Z)—r(Z)P(D*=1|Z,5 =1)
P(D*=1|Z,5=1)
c(Z)—-P(D*=1|Z,5=1)

This produces the expression in Fq. 4.

} =logit [P(D =1|Z)] =600+ 027

:>log[ ]—904—022

e log [ ] 0o+ 027 +log[r(Z)]



A.2 Bias under naive analysis

The relationship in Eq. 4 provides insight into settings in which we do and do not expect bias
in estimating 6 by fitting standard logistic regression model for D*|S =1, Z.

Suppose first that ¢(Z) = 1, so we have no misclassification of observed D. In this case, we
have the following: logit [P(D =1|Z,S =1)| =0y + 02Z + log [r(Z)]. Suppose further that we
attempt to estimate 6 by fitting a logistic regression model for D|Z on the sampled patients
using only main effects contributions of Z and ignoring the potential contribution of (7). We
expect bias in estimating 67 in this setting if (Z) depends on Z. This may happen if selection
depends directly on Z or if sampling depends on W that is associated with Z given D as shown
in Figure A.1. If selection depends on W that is independent of Z given D, there is still some
possibility of small bias in estimating 6z if W is independently related to D (Neuhaus and
Jewell, 1993).

Figure A.1l: Settings resulting in bias in estimating 0z (assuming ¢(Z) = 1). Solid lines
indicate associations, and arrows indicate drivers of patient selection.*
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*Final setting will generally only result in small or negligible bias. See Neuhaus and Jewell (1993).

Suppose instead that selection is ignorable (r(Z) = 1) and that we model potentially mis-

classified D*|Z using a standard logistic regression model. In this case, the true relationship is
1 P(D*=1|2,5=1)
08 | C2)—P(D*=1]Z,5=1

bias in estimating 6 for any ¢(Z) # 1. If both ¢(Z) and r(Z) are not equal to 1, there is even
greater potential for bias.

)] = 0y + 0z 7. Fitting a standard logistic regression will result in some



A.3 Proof of Eq. 5 and its extension to non-ignorable sampling
A.3.1 Ignorable sampling or constant sampling ratio

In Beesley et al. (2018), we used Taylor series approximations to express the uncorrected pa-
rameter associated with Z from the model for D*|Z, S = 1, denoted 0%°, in terms of the true
f, unknown sensitivity ¢, and sampling ratio, 7. In that paper, we made additional restricting
assumptions on X and W that, ultimately, boil down to the following: (1) r(Z) = 7 and (2)
c(Z) = ¢. In this particular setting, we showed that we can approximate 0% as

1
efot0zZ(1 — &)F + 1

0L ~ 0,

Now, suppose that we replace % = P(D = 1|Z) with population prevalence P(D = 1).

We also note that p* = P(D* =1|S=1)=3,_ ,, P(D*=1D=d|S=1)P(D=d|S=1) =
P(D*=1|D =1|S =1)P(D = 1|S = 1). We rewrite the above equation as

. B o 7TP(D =1)
P —cP(D—l\S—1)_C7zP(D:1)+P(D:0)

p* (¢ —p)F p*+ (¢ —p*)F
putting these together, we have
1
A~ -~ 1+690+GZZ
0%0 ~ 590"'922 — 1 HZ
1+efot0z2 (1-0o)F + 1+cot072

X
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This is the exact same structure as the estimator in Duffy et al. (2004), except this estimator
is justified for Z that is non-binary and for 7 # 1 as well. One notable feature of the above
estimator is that it does not depend on 7. Under the restrictive assumptions on r(Z) and
c(Z) above, we can adjust for both misclassification and selection using the above estimator.
Intuitively, this is because p* will be impacted by both the misclassification and sampling
mechanisms. We note that, under selection ignorable for 6 (i.e. 7 = 1), we get the same
estimator as above, which gives us Eq. 5.
Treating ¢ as fixed and replacing 6%° with an estimate, we can express
- cues €1 =)
Var(fy) = Var(%) {(5—;1)]
In reality, ¢ is unknown. However, we can obtain an estimate of ¢ and incorporate our un-
certainty about this value. We will still treat p* as fixed due to the large sample we will be
applying these methods to. We have

Var(0z) = Var(E(0z|c)) + E(Var(0z|c))

~Var (E (9%05(51__;1*)|c>> +E (Var <é%05(51—_1§)|c>>
Ve (6(61_—;9:)]5 <é%c’c)) +E ([6(@1_—;’“)]2 Var (}Cc))



juc) 2 #\2 ¢ Auc 12 s
zE(9Z> (1-p")*Var <6—p*> + Var <9Z> (1—-p")*E ([6—])*] )
Using Taylor series and other approximations, we have
E(c)

(»*)? ~ ? A 2 ?
————— = Var(¢)+ Var (0“) (1-p") | =——"— (Eq. S1)
(E(e) —p*)? z E(@) —p*

This is now a function of known values along with F(¢) and Var(¢). We can insert our prior
uncertainty about ¢ or its estimate into this expression to get the resulting variance.

A A2
Var(fz) ~ 0% (1 — p*)?

A.3.2 Sampling ratio related to Z

We now consider the setting where the sampling ratio 7(Z) is not assumed to be equal to a
constant. This is a more plausible setting for EHR data. We first take another look at the
estimator from Eq. 5. Under ignorable selection (7 = 1), we get expression
(1 — o
0, ~ ue =)
c—p*
where now p* = P(D* =1|S =1) = P(D* =1) and 0% is from f(D*|Z,S =1) = f(D*|Z).
In order to apply this estimator in the more general setting, we estimate p* = P(D* = 1)

and 0% from f(D*|Z) directly. Given the observed data on the sampled patients and IPW or
calibration weights w, we can estimate

CT)*
Zi in sample wZDi
Zi in sample Wi

We can estimate 6%° by fitting a model for D*|Z on the sampled data weighted by w. The
resulting estimator takes a similar form to the setting with ignorable missingness, but the
estimation of % and p* incorporates sampling weights.




A.4 Replacing ¢(Z) with ¢y (X)

In Section 3.2 of the main paper, we discuss replacing ¢(Z) with ¢y (X) for estimation of 6.
We provide two conditions under which this replacement is appropriate. Here, we provide some
support for these assertions.

First, we note that

Cirue(X)P(D = 1|2, X1) = P(D* = 1|2, XT)
Under a logistic regression model, this relationship implies

P(D* =1|Z,X1)
Ctrue(X) - P(D* = 1|Z7XT)

log [ ] — logit [P(D — 1)z, x1

Suppose first that D 1 X T\Z . In this case, the above expression reduces to
P(D* =1|Z,X1)
Ctrue(X) — P(D* = 1]|Z, XT)

which is the expression we want to apply to estimate 07 after replacing ¢(Z) with cgpye(X).

In practice, it may not be reasonable to assume that D is independent of factors in Xt such
as length of follow-up or number of doctor’s visits. Therefore, we want to explore alternative
assumptions that will allow for this substitution. First, we note that
XD =1,Z)P(D =1|2)

(X1 Z)
- f(X1D =1,2)P(D = 12)
 f(XTD=1,2)P(D=1|2)+ f(XT|D =0,Z)P(D = 0|2)
Replacing this expression into the logistic regression above, we have that
P(D* =1|Z,XT) (XTID=0,2)
Ctrue(X) — P(D* =1]|Z, XT) (XT|D=1,2)
Again, this last term is zero if f(XT|D =0,2) = f(XT|D =1,Z),s0if D L XT|Z. Alternatively,
suppose that Z 1 X T]D. In this case, the above expression reduces to
P(D* = 12,x1) FXTID = oq
Ctrue(X)_P(D*:HZaXT) f(XT‘Dzl)

log[ :| =0y +0z7

P(D=1|Z,X") = /(

log[ } =60y+ 077 —log [jj

log[ ]:90+GZZ—log[
The final term will be a function of X' or possibly a constant. In either case, we do not expect
failure to include this offset term will result in much bias in estimating 0z. However, 6y may
be impacted by a failure to include this term. Usually, however, we are primarily interested in
estimating 0z, and inference about 7 obtained by replacing ¢(Z) with ¢y (X) and ignoring
the offset term will have little residual bias.



A.5 Proof of Eq. 6 and Eq. 9

In this section, we explore how to estimate cte(X). We observe that

I _P(D*=1,D=1]X) P(D*=1[X)
Ctrue(X)_P(D _1|D_1’X)_ P(D:1|X) o P(D:1|X)

since D* = 1 implies D = 1. If we assume a logistic regression model structure for sensitivity

as in Eq. 1, we have

PD*=1|X)] . . B

P(D = 1|X) ] = logit [ctrue(X)] = Bo + Bx X
P(D* =1|X)

P(D=1|X)- P(D*=1|X)

This expression allows us to estimate § if P(D = 1|X) is known, but in reality we will not
know this term. For example, X may contain information such as the length of follow-up in the
EHR, and we will likely not know how this is related to true disease status. However, we can
incorporate some prior beliefs about P(D = 1|X) to estimate /3 using the above expression.

Suppose first that D is independent of X. In this case, we might replace P(D = 1|X)
with P(D = 1), the population disease prevalence. For EHR data, it may be that known risk
factors such as age and gender are indicators for enhanced disease screening and, therefore, may
be incorporated into X. In this case, we may know the relationship P(D = 1|X,,;) for some
subset X of X from population summary statistics. If we assume D is independent of the
elements of X not included in X, then we can replace P(D = 1|X) with known relationship
P(D = 1| X4y). This will allow us to estimate 3.

Importantly, the above expression may not always have a solution for a given estimate
P(D = 1|Xsu), and it may produce inaccurate sensitivity estimates when P(D = 1|Xgy) is
poorly specified. An alternative strategy for estimating ¢y (X) is to fit a standard regression

model for P(D* = 1|X) and use c¢yye(X) = min (%, 1) using estimates for both the

numerator and denominator. In our experience, this estimator tends to be more robust to mis-
specification of P(D = 1|X).

logit [

o log{ = B0+ BxX

Now, we consider the setting where we have potential selection bias. We first observe
that

o _ P(S=1X,D=1)P(D=1]X) _ rP(D =1|X)
P(D=1]S=1X)= S P(S=1/X,D =d)P(D=d|X)  #P(D=1X)+ P(D = 0]X)

where we approximate % with 7 = %. Using logic as above, we also have

that
P(D*=1|X,5=1)
P(D=1|X,S=1)—-P(D*=1|X,5=1)

log = fBo + BxX

P(D*=1]X,8 =1)

rP(D=1|X . _
fP(D:1|g()+P‘(D):O\X) - P(D*=1X,5=1)

= log ~ fo+ BxX




A.6 Jointly estimating 6 and [

In this section, we describe how we can jointly estimate 6 and S to deal with misclassification.

A.6.1 Some assumptions

First, we notice that P(D* = 1|Z, XT) = cpue(X)P(D = 1|Z, XT). As shown in Web Ap-
pendix A.4, we have that

(a) P(D* = 1|2, XT) = expit(Bo + BxX)expit(fp + 072) if D L XT|Z or that

(b) P(D* = 1|Z, X1) = expit(fo + Bx X )expit [90 0,7 —log (%)} it Z 1 XT|D.
Fixing 3, we would expect little bias in estimating 67 in the latter case if we were to drop
the offset term involving XT from the equation. Therefore, we will define the observed data

log-likelihood using model structure
P(D* =1|Z,X1) = expit(Bo + Bx X )expit(fy + 07 2)
with an understanding that either (a) D L XT|Z or (b) Z L XT|D must hold and resulting
inference about 6y may be subject to residual bias under (b) and not (a).
A.6.2 Direct maximization of observed data log-likelihood

Under these assumptions, we define the observed data log-likelihood as follows:
Bo+Bx Xi bo+02Z; Bo+Bx X bo+0z7Z;
* (& e % e e
Lobs (6 Z Dilog |:1 + ePotBxXi ] 4 e9o+GZZi:| + (1 - Dj)log |:1 1+ ePotBxXi 1 4 ebot0zZ;

:ZDilog i(6,8)] + (1 - Di)log [1 - Ki(6, B)

We can estimate 6 and [ by directly maximizing this likelihood through a Newton-Raphson
algorithm or numerical optimization method. We have the following score function and expected
information matrix.

0.5=2 % R an Ju

R D (¥ [(R N R TR T
0K;(0, ) _|v= 0 : H%?Z)Z(l ,Z1h)

These expressions can be easily calculated given the observed data.

The task of jointly maximizing 6 and £, however, can be numerically challenging. In par-
ticular, the likelihood surface can be difficult to maximize when both intercepts 6y and S5y are
left unspecified. Therefore, we perform parameter estimation using a profile likelihood strategy
across g, where we specify discrete values of 5y, perform maximization to estimate other pa-
rameters given that value of [y, and ultimately choose the value of 8y that results in the largest
log-likelihood values. In simulation, we have found that this strategy tends to have improved
performance over joint maximization of all model parameters. Additionally, one can specify a
single fixed value for 3y a priori. One strategy is to set 8y to the logit of an estimate of ¢ as in
Section 3.1 for mean-centered X. This may be a useful strategy for improving our ability to
estimate other model parameters and tends to perform well in simulation.



A.6.3 Maximization using an EM algorithm

Direct numerical maximization of the observed data log-likelihood can sometimes be cumber-
some for large datasets. In this setting, it can be faster to perform parameter estimation using
the following expectation-maximization (EM) algorithm. Firstly, we can write the complete
data log-likelihood as follows:

690+92Z

1
Leom (0, ZD log [Hewzz] + (1= Di)log [Heewzz}

. eBo+Bx X y 1
—+ Dz Dzlog |:1_|_€50+5XXZ:| + (1 - Dz )DZ]Og |:1_|_€50+/8XX11|

This expression is linear in D;. Given the observed data and our modeling assumptions, we can
replace D; in the E-step of the EM-algorithm with
P(D*=0|X,D=1)P(D =1|%Z)
Y aP(D*=0|X,D =d)P(D=d|2)
P(D*=0/X,D=1)P(D=1|2)
P(D=0|Z)+ P(D*=0|X,D=1)P(D =1|2)
efo+0z2;

p=P(D=1D"X,Z)=D"+ (1 - D")

— D*+(1- DY

In the M-step, we maximize the following expected log-likelihood with respect to # and j3:
oHo+02Z;

1
Q= szlog [Heﬁezz] + (1~ pi)log [14_6904-922}

. ePo+BxXi . 1

In practice, this can be accomplished by (1) fitting a logistic regression with p; as the outcome
and Z; as covariates and (2) fitting a logistic regression with D} given X; weighted by p;.

A.6.4 Incorporating weights into the algorithms

We can address selection bias and misclassification simultaneously by maximizing a weighted
version of the observed data log-likelihood, called a pseudo log-likelihood, as follows:
eBotBxXs ebo+0zZ; eBotBxXs bo+0zZ;
ZMZD log |:1 + ePotBxXi ] 4 bot+0z2; :| +wi(l = Di)log |: 1+ efotBxXi] + 690+92Zi:|

We can similarly estimate 6 using a weighted version of the above EM algorithm. In particular,
let w; be our weights. In the E-step, we replace D; as before. In the M-step, we maximize the
following expected pseudo log-likelihood
Oo+6zZ; 1
e
Q= Zwipilog [1_4_69(#9221'] + wi(1 — pi)log |:1—{—690+9ZZ~L:|
(2

. ePo+Bx X . 1
=+ wiDi pilog [H(B&JM] + wi(l - Di )pilog [1—{—6/&)%]

Similar to before, we can obtain estimates of # and [ in the M-step by (1) fitting a logistic
regression for p; given Z; weighted by w; and (2) fitting a logistic regression for D} given X;
weighted by p; x w;.

Justification for the usual EM algorithm is based on properties of likelihoods. In the weighted
example, however, we no longer are working with a valid likelihood. Therefore, convergence
properties are not immediately clear. However, this strategy can be justified under literature
exploring a variant of the EM algorithm called the expectation-solution (ES) algorithm. In this



variant, we transform the problem from maximizing a log-likelihood to solving corresponding
score equations. Theoretical properties of the ES algorithm are explored in Elashoff (2004) and
Rosen (2000).

A more challenging concern is estimation of the covariance matrix. Since we are no longer
maximizing a valid observed data log-likelihood, we can no longer rely on the observed data in-
formation matrix directly. Instead, we apply the following commonly-used sandwich estimation
strategy (e.g. as implemented by the R package sandwich). First, we define the “bread” of the
sandwich matrix as follows

- 1 0Ki(0,8)%%|
3(9’5)—[;”1@(9,5)[1Ki(e,ﬁ)] o160, ] ]

This is the inverse of a weighted version of the information matrix for the observed data log-
likelihood of interest. For the “meat” of the sandwich estimator, we express the weighted
variance of the observed data score matrix as follows:

B D:( — KZ(G, B) 8K7,((9, 5) @2
M(6,5) —Zi: {wiKi(O,ﬁ)[l—Ki(evﬁ)] o1, Al }

Using these components, we express

Var([0, 8]) = B(6, )M (0, 3)B(0, B)
Suppose we perform this estimation fixing Sy. We then obtain corresponding standard errors
for the other parameters by calculating B and M excluding the column and row corresponding
to By. In the case of B, we exclude this column and row prior to inverting the weighted matrix.
In simulations, this estimator resulted in nominal coverage.

10



A.7 Proof of Eq. 7 and Eq. 10

A.7.1 Assuming no phenotype misclassification

In this section, we clarify the expression used to estimate P(S = 1|D, W) for obtaining IPW
weights in Section 4.1. Assuming that no patients are included in both the internal and
external datasets, we have that

P(S=1,D,W) PD,W|S=1)P(S=1)

P(S=1|D,W) = PDW) P(D,W)

and
P(D,W|Sest = 1)P(Sear = 1)

P(Seat = 1|D, W) = POW)

Putting those pieces together, we have
P(D,W|S=1)P(S=1)
P(D,W|Sext = 1)P(Sear = 1)

P(S =1|D,W) = P(Sep; = 1|D, W)

We also have that
P(S=1,D,W|Syuu=1)
P(Dv W’Sall = 1)
_ P(D,W|[S=1)P(S=1[Say = 1)
B P(D7W|Sall = 1)
B P(D,W|S=1)P(S=1|Sy =1)
Y P(D WSy =1,8=d)P(S =d|Sa = 1)
B P(D,W|S=1)P(S=1|Sy; =1)
- P(D,W|S=1)P(S=1[Sqy=1)+ P(D,W|Sept = 1)P(S = 0|S,; = 1)
P(D,W|S =1) _ P(S=1D,W,Su;=1) P(S=0[Sy;=1)
P(D,W|Seet =1)  1—P(S=1|D,W, Sy = 1) P(S = 1|Sa = 1)

Therefore, we could also express

P(S=1D,W, Sy =1)=

P(S=1 P(S=1D =1) P(Sext =1|Say =1
P(S = 11D, W) = P(Seut = 11D, W) L0 = 1) PE=UD W San =1)  PlSeat = 15a = 1)

P(Seqt =1)1—=P(S=1D,W,Syu=1) P(S=1|Sa1=1)
P(S=1|D,W, Sy =1)

1—-P(S=1D,W,Su; =1)

In practice, W may not be available for either the internal or external datasets, and a subset,

Wy might be used in its place. We would effectively be approximating P(S = 1|D, W) using
available P(S = 1|D, W, in that case.

= P(Sext = 1|D, W)

A.7.2 Assuming phenotype misclassification

Now, we suppose that we have phenotype misclassification, so D is not observed. In this case,
the best we can do is estimate P(S = 1|D*, ). We observe the following
) DS =1, W)
P(S=1|D*,W) FD W) P(S=1|W)
The first term, f(D*|S = 1, W), can be estimated by modeling D* directly using the observed
data. P(S = 1|WW) can be estimated using the method in Eq. 7 but only conditioning on W
rather than W and D.

If D* is measured on the external probability sample, then f(D*|W) can also be estimated
directly. Usually, however, our external dataset may have D measured. In this case, we can
estimate f(D*|W) using that P(D* = 1|W) =~ ¢P(D = 1|W) and assuming P(D = 1|W)
is known or estimated using the external probability sample. Here, sensitivity ¢ may be ¢ or

11



Ctrue(X). As before, we might not always have W measured in the internal and external datasets
in practice, and we might approximate the above distributions using available predictors, W,;.

A.7.3 Relationship between selection model and calibration weights

In the main paper, we describe how we can use summary statistics on D and W (or possibly a
subset Wy,p) to define poststratification weights as follows:
W) foW) )
f(ID,W[S=1)  fIDW,S=1) f(W|S =1)
To help clarify the link between poststratification weights and inverse probability of selection
weights, we note the following:

J(DW,S=1)  f(D,W]S=1)P(S = 1)
e (N1 F(D.W)
If we were to define inverse probability of selection weights using the above expression, we would
define

L fow)
P(S=1[D,W) ™ F(D, W[5 =1)
These weights take the exact same form as the poststratification weights, so we can view post-
stratification weights as a similar type of weight as inverse probability of selection weights but

using different types of information (individual patient data vs. summary statistics) to estimate
P(S=1|D,W).

w X
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A.8 Proof of Eq. 8

In this section, we develop an expression to relate 7 to observed quantities and ¢. We have that
P(S=1D=1) PD=1S=1)P(D=0)

i = =

P(S=1D=0) PD=0S=0)PD=1)

Now, we also have that

P(D*=15=1)=Y P(D*=1S=1,D=d)P(D=d|S=1)=P(D=1|S = 1)
d

P(D*=1|8 =1)

— P(D=1|S=1)= :

. p(D =051y = PP =S =)

Putting these pieces together, we have
P(D*=1|S=1) P(D
¢—P(D*=1|S=1)P(D

=

0)
1)
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A.9 Combining multiple complicated selection mechanisms

As discussed in Haneuse and Daniels (2016), the mechanism governing patient selection in our
EHR analytical dataset may be complicated and composed of many different sub-mechanisms.
Figure C.1 provides a visualization of the various mechanisms generating patient inclusion in
MGI.

In light of these complicated selection stages, the strategy of modeling overall selection using
a single model as in Fq. 7 may be insufficient. Instead, we define a set of intermediate selection
indicators corresponding to different inclusion mechanisms. In the MGI example, let S might
indicate whether a patient was seen at Michigan Medicine, let Sy indicate whether the patient
visited a clinic involved in MGI recruitment, let S3 indicate whether the patient was approached
for consent, and let Sy indicate whether the patient was included in MGI, where S = 1 only if
Sr_1 = 1. Define Sy = 1 for all patients in the population. In this updated notation, the overall
sampling indicator S corresponds to Sy and P(S = 1|D, W) = [[1_, P(Sk = 1|D, W, S)_1 = 1).

Individual-level data available

Suppose first we have individual level data for all patients such that S; = 1, and the amount
of individual-level data may differ for patients in subsequent samples (e.g. So =1, S3 = 1, etc.).
We expect to have the most individual-level data in the MGI dataset (patients with Sy = 1).
At a given stage k > 1, we model P(S; = 1|D, W, S;_1 = 1) using available covariates Wj_1,
effectively approximating P(Sy = 1|D, W, Sx_1 = 1) with P(Sy = 1|D, Wy_1,Skx—1 = 1). This
approach is used in Haneuse and Daniels (2016).

Unlike the mechanisms considered in Haneuse and Daniels (2016), P(S; = 1|W,D,Sy =
1) = P(S1 = 1|W, D) cannot be directly estimated using the EHR data since we do not have
individual-level data available for all patients in the population. However, if we have individual-
level data on D and subset Wy of W for a probability sample from the population, we can
estimate P(S7 = 1|Wy, D) using Eq. 7, treating the S; = 1 patients as our internal sample.
This allows us to bridge the gap between our large EHR (e.g. Michigan Medicine) and the
population of interest.

Summary statistics available

Suppose instead that we know the joint distribution of D and W for the general population
of interest and for our S; = 1 sample. We also note that
P(D, WIS =1)P(Sp =1|Sx_1 =1)

P(D,W|Sk_1=1)

Taking the product of Eq. S2 over k, corresponding inverse probability of selection weights
would be w %. This expression recovers the poststratification weights discussed
previously, where the contributions of intermediate sampling steps are multiplied out of the
expression. In practice, we may not have true W available, and we will approximate w using
available variables in W, W.

P(Sy =1|D,W,Sp_1 = 1) =

(Eq. S2)

Mixed information across selection stages

Rather than having summary statistics or individual-level data uniformly across all selection
stages, we may have individual-level data for some stages of the selection mechanism and only
summary statistics for others. In this case, we can still express P(S = 1|D, W) = Hi:l P(Sk =
11D, W, Sx—1 = 1), and we will obtain each P(Sy = 1|D,W,S;_1 = 1) using the data type
available at that selection stage. If individual-level data is available on the S;_; sample, we can
apply the methods above for individual-level data. If only summary statistics are available for
the Si_1 sample, we can estimate P(Sy = 1|D, W, Sp_1 = 1) using Eq. S2. In this way, we can
piece together estimates for each P(Sy = 1|D, W, S;_1 = 1) based on the available information
at each selection stage. This will allow us to obtain an estimate for P(S = 1|D, W).
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A.10 Estimating standard errors

In the main paper, we develop statistical methods for obtaining bias-corrected point estimates
for A, but we do not directly address estimation of corresponding standard errors. Here, we
describe how this can be done. In general, we appeal to existing results in the maximum
likelihood estimation and survey sampling literature.

Table A.1 provides details about the proposed variance estimators for each of the bias-
correction methods proposed in this paper. We provide estimators for each one of the bias-
correction methods treating estimated sensitivity and/or IPW /calibration weights w as fixed.
In the footnote, we describe how we can account for additional uncertainty due to estimating
sensitivity and/or w using bootstrap methods. Derivations motivating these variance estimators
can be found elsewhere in the text (e.g. Web Appendices A.3 and A.6 and below).

Table A.1: Strategies for estimating standard errors for 6 *

Bias Method

Misclass.  Approximating D*|Z distribution (Section 3.1)

A A = o 2 A
o Var(6z) ~ Var(6%°) {%} where 0% is the uncorrected log-odds ratio.

i suc2 [P(D*=1)[1-P(D*=1)]]? = juc) [ E@[1-P(D*=1)]]?
o Var(fz) ~ 0% [ ( E(E)E[P(D*(:l) )]} Var(¢) + Var (92 ) [%}

Misclass.  Non-logistic link function (Section 3.2)
N Got+0z7

—1
e Var(d) = [Zt 1+[1,C(CZ(;)690+QZZ (1+ef0T027)2 (1, Z)®2}
where we replace ¢(Z) with an estimate.

Misclass.  Obs. data log-likelihood (Section 3.3)
e Using the expected obs. data information matrix, we have

-1
N 1 OK;(0,8) 0K;(6,B) _ ePotBx X bo+072;
Var() = [Zl R OAI-K 05 00.5) 00,57 ] where Ki(0, 8) = 5 mraxss 15007927

Selection ~ Weighting by w (Section 4)
e Apply Huber-White sandwich estimator with survey weights
as implemented in R package survey (Freedman, 2006).

Both Approximating D*|Z distribution + weighting (Section 5.1)
e We can use the same general variance structure as in the unweighted case except
we estimate §%° using a weighted regression model fit with Huber-White standard errors.

We also replace P(D* = 1) with p* = Zzwwl?

Both Non-logistic link function + weighting (Section 5.2)
e We can again apply the Huber-White sandwich estimator with survey weights
as implemented in R package survey (Freedman, 2006), except this time we specify a
non-logistic link function for the estimation and define the meat and bread matrices
corresponding to the modified link function given cgpye(X).

Both Obs. data log-likelihood + weighting (Section 5.3)
e We no longer have a valid likelihood, and we apply the following sandwich estimator

—1
Ve ve = E 1 i(0,8) 0K (0,8
ha B(Q,B) - i Ji K1( X )[ Kl( : )] 0K ( ) K ( )

o10,5]  0[6,8]"

F—Ki(0, il0, ®2 ) A ) A ) A ) A
M(9,8) = ¥, [wi s Soner] and Var(d, 8) = B0, 3)M(8, 3)B(0, 3)

* Many of the above estimators treat sensitivity and/or IPW /calibration weights w as fixed and do not take into
account the uncertainty in estimating sensitivity or w. One could account for this uncertainty through bootstrap
methods, where sensitivity, w, and 6 are estimated for each of many bootstrap samples of the data. The resulting

distribution of § can then be used to obtain standard errors.
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A.10.1 Comparison between naive and misclassification-corrected standard errors

In this section, we focus on the setting where we have misclassification and where selection is
ignorable. We want to compare the magnitude of the standard errors obtained using the var-
ious bias-correction strategies amongst each other. We also will compare these bias-correction
strategies to naive analysis.

Naive: We suppose we fit a logistic regression model to the observed data and treat the
resulting parameters as if they were . The structure of the resulting expected information
matrix is as follows:

ot02Z

Iuc(‘g) = Z W(l’ Z)®2

Approximation of D*|Z method: The variance estimation equation for éz from approxi-

~ ~ ~ s 2
mating the D*|Z distribution is Var(dz) ~ Var(f%) [%] . Since ¢ and P(D* = 1)

are both strictly less than 1 under imperfect sensitivity, we have that Var(6z) > Var(d%). Ad-
ditionally, we can write the expected information matrix implied by this model as a function of
0 as follows:

L

1
Taman®) = | U W+ 27y

Non-logistic link function method: Consider the likelihood function corresponding to the
distribution of D*|Z and its relationship to 6 and ¢(Z) as follows:

Oo+0z7 D Oo+02 2 1-D*
e e
b= H [C(Z) 1+ e90+922] [1 — D17 690+92Z]
(2
log(L) = ZD*(GO +0z7) —log [1 + eeO‘HQZZ] + (1 — D%)log {1 +(1- C(Z))e(?o—HﬂzZ} + constant
7
with score function

bo+022 1 — o(7))ebo+022
e =2, {D* ez 0D a —(c()Z)))e‘90+92Z} (1.2)

i
and information matrix
690+92Z (1 _ C(Z))€90+92Z

10 =3t ey ~ 0~ PV ey 0

This information matrix is strictly less than the information matrix for naive logistic regression
when ¢(Z) < 1. Therefore, ¢(Z) less than 1 will result in an increase in corresponding standard
errors when we correctly account for the misclassification.

We might also be interested in the expected information matrix, where we replace D* with
its expectation, ¢(Z)expit(fy + 027). Replacing D* in the above equation and re-writing, we
have that

C(Z) 690+0ZZ
Ilink<6) = Z 1+ [1 _ C(Z)]€9()+GZZ (1 4 690+92Z)

i

2 (17 Z)®2

Again, this will be strictly less than the information matrix from naive analysis.
Suppose we estimate 6 replacing ¢(Z) with ¢ (X), which is a function of 5. We can write
the expected information matrix as a function of 3 as follows:
I o) — 650+,BXX1' 690+92Z
link(0) = Z 1+ ePothxXi 4 ebot0zZ (1 4 ebo+022)

5(1,2)%2 (Eq. 83)
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We will use this quantity later on.

Observed data log-likelihood maximization method: When we jointly estimate 6 and /3
using the observed data log-likelihood, we have corresponding expected observed data informa-
tion matrix as follows:

Io S 97 /8 =
0s(0,) Z Ki(0,5)[1 - K,(6.8)] 9(6,8) 9(0,5)T

eBot+Bx X efot0z2;

®2
_ 1+ePotBx Xi 14ebot+027; 1 ‘ ; |
_Z 1 ] [1—&-690"‘9221'(1722)’ 1—|—650+6XX7;(1’X7‘):|
3

eBot+Bx X efot0z7;
T 14ePotBxXi 14ef0 027,
eBo+BxXi b0+022Z; 1 1 ®2
= 1 N — (1. X;
Z 1+ ePot+BxXi 4 ebo+02Z; |1 4 ebo+02Z; (1, Z), 1 + eBot+BxXi (1, Xi)
1

0; Y A S Lot (1,2)%2 Y, Lotttz (1,2)(1X)"
. ) i 14+ePotBxXitebotoz7; (1+600+6Z2i)2 ’ 1 14+ePotBxXitebotoz7; (1+eﬂ0+ﬂxxi)(1+eeo+azzi)
- Bo+Bx Xiebo+0z7Z; (1,Z:)T (1,X; 00+072; Bo+Bx X; 2

. [ e ) ) e [&
5, Z i) ( i) Z (17X1)®

t 14ePotBxXi L elot0z7i (14ePotPx Xi)(14e00102%:) t 14-ePotBxXipelot0z2i (14ePotPxXi)2

Now, we appeal to results in the linear algebra literature to relate the corresponding covariance
matrix with the covariance matrix we would obtain if we fit the naive, uncorrected model.
Denote the terms in I, as
A B
Iobs(eaﬂ) = |: BT D :|

Assuming D is invertible, we have that

Lpu(6.5)] ) = (A—BD™1BT)! —(A-BD™'BT)"1BD!
obsi | -D'B"(A-BD7'BT)"' D'+ D 'BTA-BD'BT)"'BD™!

following Lu and Shiou (2002). Now, let’s take a closer look at the element corresponding to the
covariance matrix of 6, (A — BD~'BT)~!. Using properties of the inverse of sums of matrices,
we have that

1

1 — trace(BD—1BT A1)

Assuming D is invertible (which it is) and has non-negative diagonal elements (which it does), we
have that BD !B will also have non-negative diagonal elements. Assuming A is also invertible
(which it is), A=*BD~! BT A~! will also have non-negative diagonal elements. Now, we need to
determine the sign of ;— trace(B 5,1 BTA=T)" We have already concluded that BD~'B” has non-

negative diagonal elements. Additionally, A~! is invertible and will have non-negative diagonal
elements. Therefore, trace(BD ™' BT A~1) will be positive. The question remains whether it will
be greater than or less than 1. We generally expect trace(BD~'BT A~1) will be less than 1 for
sufficient sample size, since A~! will have small entries in this setting. We make this assertion
noting that A~! is equal to the inverse of Ij;x(6) when c(Z) is replaced by cirue(X) as in Eq.
S3. Therefore, A~! is the variance of 0 when sensitivity is fixed to be equal to cypye(X).

For sufficient sample size, we have that

A'BD BT A1

(A-BD !Byl =414

1
1 —trace(BD—1BTA-1)
where ‘diag’ represents the diagonal elements of the matrix.
Noting that A = Ij;.(0) with ¢(Z) replaced by ciue(X), we showed previously A=! >
L..(0)~% Putting things together, we have that the diagonal elements covariance matrix asso-
ciated with 0 from the observed data log-likelihood maximization follows

diag([Lovs(0, B)]gg) > diag(A™") > diag([L.e(0)) ")

AT'BDT'BTA™Y) > diag(A™Y)

diag([Tos(0; B)]y9) = diag(A~" +
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This shows that for a fixed value of 0, the standard errors will be larger under the observed data
log-likelihood maximization method than the naive method. For fixed values of the corrected
and uncorrected maximum likelihood estimates, however, it is possible for the standard errors
to be smaller. In generally, however, we expect larger standard errors under the observed data
log-likelihood method.

Overall comparisons: Putting everything together, we have the following for a fixed 6

diag(Le(0)™") < diag(Link(0) "), diag(Luppros (0) ™) < diag([Lops(0, B)]55)

noting that A = Ij;,,(0). This states that the standard errors for all bias correction methods
will tend to be larger than the naive method and that the method using the observed data
log-likelihood will tend to be the largest. This may not always be the case for a single data
analysis, however, because these functions will be evaluated at different estimates for . In
general, however, we expect the above orderings.

Overall, we expect the methods that use fixed sensitivity to produce smaller estimated
standard errors than the observed data log-likelihood method (without fixed f3p). We expect
this to be often true even when we account for the estimation of sensitivity for the non-logistic
link function and approximation methods, since external information is incorporated into these
methods. It is difficult to determine the relative orderings of standard errors for the non-logistic
link function method and the method approximating the D*|Z distribution in general.
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B Simulations

B.1 Simulation study set-up

The simulation study is broken up into three parts: (1) misclassification only, (2) selection bias
only, and (3) misclassification and selection bias. In all simulation settings, we first generate
500 datasets with 5000 patients each. This sample of 5000 represents the true population. For
each simulated dataset, we start by generating covariates Z, W, and X from a multivariate
normal with mean 0, unit variances, and covariances o, 0., and g,,. True disease status D
is then generated using the following relation: logit (P(D = 1|Z)) = =2+ 0.5Z.

In simulation part 1, we then generate D* using the sensitivity relation
logit (P(D* =1]|X,D = 1)) = fo + X and assuming perfect specificity. We consider 5 different
scenarios for 5y and the association between X and Z as shown in Table B.1. The values of
B correspond to marginal sensitivities of roughly 0.4, 0.65, 0.8, and 0.95.

In simulation part 2, we define D* = D. We allow for the possibility of correlation between
W and D by defining Wyew = Woriginal + 04w D, Where o4, controls the strength of the relation-
ship between D and W. We then impose sub-sampling to obtain our analytical sample using the
following relation: logit (P(S = 1|W = Wyew, D)) = ¢o+ ¢p D+ ¢ W. We consider 4 different
simulation scenarios as shown in Table B.1. The ¢ values were chosen to give roughly a 50%
selection probability on average.

In simulation part 3, we simulate data as in part 2 but also generate D* using
logit (P(D* =1|X,D = 1)) = 0.65+ X with 0,; = 0 as in Setting 2 of simulation part 1. Many
other simulation settings were explored with similar results, but these will not be presented
here.

For each dataset in simulation part 1, we corrected for misclassification bias by applying
the various methods discussed in Section 3. Unless otherwise specified, these methods were
implemented using estimates for sensitivity based on the simulated data. ¢ was estimated as
%. ctrue(X ) was estimated using the method in Fq. 6 and assuming known P(D = 1|X).

In simulation part 2, we corrected selection bias using IPW or calibration weighting. Inverse
probability weights were obtained either by fitting a model for selection using the entire popula-
tion (denoted “Population IPW”) or estimated using a probability sample from that population
and applying FEq. 7. Poststratification weights were estimated using the correct population
summary statistics for W and D after binning continuous W.

For each dataset in simulation part 3, we corrected selection bias and bias due to phenotype
misclassification using the methods discussed in Section 5. ¢ and ¢y (X) were estimated using
7 fixed at the simulation truth and using ¢ = % =P(D*=1|S = 1)FP(D;31()D+51()D:0)
or Eq. 9 respectively. We used the correct IPW weights for these simulations rather than
sample-estimated weights. Results are very similar when we estimate IPW weights using FEgq.
10. Implementation of the observed data log-likelihood maximization method assumed fixed
intercept By = logit(¢é).

For each simulated dataset, we apply the above methods to estimate the log-odds ratio of Z
corresponding to the logistic regression for D|Z. In all settings, we then estimate the average
and median deviation from the truth of 0.5 across the 500 simulated datasets. We also estimate
coverage of 95% confidence intervals and corresponding statistical power. For each simulation
setting, we also run a paired simulation where true 8z is set to 0, allowing us to assess false
positive rates. Standard errors were estimated as discussed in Web Appendix A.10.
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Table B.1: Simulation set-up

Part 1 Part 2

Setting 60 Ozx d)() ¢D ¢W Ozw O dw
1 -0.4 0 -0.6 1 0.5 0.4 0
2 0.65 0 -0.6 1 -0.5 04 1
3 14 0 -0.2 0 -0.5 04 0
4 2.9 0 -0.1 0 0.5 0.4 1
5 -04 0.5 - - - - -

Part 3

B.2 Simulation 1: phenotype misclassification with ignorable sampling

In Section 7, we present a set of three simulation studies exploring the performance of our
proposed methods for handling (1) phenotype misclassification, (2) selection bias, and (3) both
misclassification and selection bias. In this and the following two sections, we provide additional
explorations into these simulation study results and additional evaluation of our proposed esti-
mators for sensitivity and sampling/calibration weights. Our focus in this section is the setting
where we have phenotype misclassification and can ignore the sampling mechanism.

B.2.1 Impact of correcting for misclassification on p-values

In the main paper, we focus on assessing bias in estimating 8, but we may also be interested in
studying the impact of misclassification and our methods on the resulting p-values. Figure B.1
shows the estimated p-values and 67 across 500 simulations when the outcome D* has ¢ ~ 0.4
and Z and X are independent (Setting 1 in Table B.1).

Figure B.1: Estimated p-values and 6z across 500 simulations after imposing phenotype
misclassification with roughly 40% average sensitivity assuming X and Z are independent

(a) -logl0(P-values) (b) Estimated 0z

Comparing —log10(Pvalues) Comparing Theta_Z Values

True Uncorrect ted Obs. log-lik Obs. log-lik, fixed  Approx D* with ¢ Link with ¢ True Uncorrect ted Obs. log-ik Obs. log-lik, fixed  Approx D* with ¢ Link with ¢
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The left panel of Figure B.1 demonstrates that, with the exception of the strategy where
we jointing estimate 6 and [ (which results in losses of efficiency relative to methods where we
assume sensitivity is known), the p-values for the uncorrected and corrected analysis are nearly
identical when X and Z are independent. As shown in the right panel, however, the resulting
0 estimates often differ slightly. This indicates that, while misclassification is important to
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address for estimating 6, misclassification may be ignored in some cases (in particular, when
we can assume independence between Z and X) when the primary interest is in estimating
p-values.

Figure B.2 shows the same plots in the setting where X and Z are correlated (Setting 5
in Table B.1). In this case, both the estimated p-values and 67 values can differ substantially
between the bias-corrected and uncorrected methods. An exception is the method in which we
approximate D*|Z. This method ignores covariate relationships in the sensitivity and there-
fore does not correctly handle the misclassification in this setting. This simulation demonstrates
that, when X and Z are expected to be correlated, we can have a potentially substantial impact
on both p-values and parameter estimates. While the p-values in the corrected and uncorrected
data analyses are very highly correlated, the magnitudes of the estimated p-values are different.

These observations are particularly useful for PheWAS studies, where we compare p-values
resulting from regression modeling of many different phenotypes, each of which may have dif-
ferent sensitivity properties. These results indicate that there should not be a large impact of
the differential misclassification across diseases on the resulting p-value comparison when X
and Z are reasonably assumed to be independent. When X and Z may be related, however,
accounting for misclassification across diseases can be important.

Figure B.2: Estimated p-values and 6z across 500 simulations after imposing phenotype
misclassification with roughly 40% average sensitivity assuming X and Z have correlation 0.5
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B.2.2 Power and type I error

Now, we take a closer look at the impact of misclassification and our corrections on type I
error and power. We simulate data as before but vary the true value of 8z and the correlation
between X and Z. Figure B.3 shows the results across 500 simulated datasets corresponding
to 95% confidence intervals.

Figure B.3a shows the type I error rates. When X and Z are uncorrelated, we see nominal
type I error rate across simulation settings considered, where the horizontal line in Figure B.3
corresponds to a type I error rate of 0.05. This is consistent with Figure B.1, which showed
little difference in the resulting p-values. When X and Z are correlated, however, we can see
that the type I error for several of the methods is extremely large. This is due to bias resulting
from the misclassification related to Z. For the methods that correct for misclassification by
allowing a dependence between sensitivity and covariates, type I error rates generally return to
nominal. An exception is the setting where X and Z are correlated, sensitivity is roughly 0.65,
and we correct for misclassification using the non-logistic link function method with estimated
¢(X). This may correspond to a setting where ¢(X) is more difficult to estimate, and therefore,
some residual bias remains.

Figure B.3b shows the power when 67 = 0.05. Note that this is a small value for 6.
We chose a small value to allow for imperfect power and easier comparison across methods. In
settings where X and Z are uncorrelated, power is generally extremely low due to the small value
of 7. However, we can see some small differences across sensitivities, where higher sensitivity
might have a slight edge in terms of higher power. When X and Z are correlated, power is
substantially larger for methods that have bias away from the null. For methods that correct
for the bias due to misclassification, the power naturally goes down as corrected point estimates
move toward the null. Again, we see slightly inflated power in one particular setting for the
non-logistic link function method with estimated c(X).

Figure B.3: Estimated false positive rates and power across 500 simulations after imposing
phenotype misclassification
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B.2.3 Evaluating sensitivity estimates

Switching topics, we now focus on estimation of the sensitivity parameters themselves. In the
main paper, we propose several strategies for estimating either marginal sensitivity or individual-
level sensitivity using the observed data and some minor additional information about the
population of interest. These methods are as follows:
Method 1: Estimate “crude” marginal sensitivity as ¢ = P(D* =1|D =1) = %
Method 2: Estimate ¢y (X ) using link function method assuming P(D = 1|X) is known:
Fit the following model for D*| X

P(D* =1|X)
P(D = 1|X) — P(D* = 1|X)
Method 3: Estimate cge(X) through joint estimation of S and 6.

= fo + Bx X

log

In Figure B.4, we evaluate the estimated ¢ from the above equations across 500 simulations
in two simulation settings from Table B.1. In both simulation settings, the average sensitivity
is roughly 0.4. In Setting 1, X and Z are independent, and they are correlated in Setting 5. In
both settings, these estimates are well-centered around the true marginal sensitivity (in red).

In Figure B.5, we show the average c¢;ru(X) estimates across various methods and for
10 simulated datasets after applying either the non-logistic link function method with fixed
P(D =1) or P(D = 1]X) after applying the observed data log-likelihood maximization method
(with or without a fixed fp). In both simulation settings, the non-logistic link method and
observed data log-likelihood maximization method with fixed intercept at logit(¢) perform well.
However, the sensitivity estimates from the observed data log-likelihood with arbitrary Sy are
very variable and do a poor job of recovering the truth for any one simulated dataset. This
suggests that incorporating information into the observed data log-likelihood method about
P(D = 1) through fixed intercept at logit(¢) can improve our ability to estimate the individual-
level sensitivity substantially.

In Figure B.6, we show the estimated values for Sx for several methods and across 500
simulations. These estimates tend to be well-centered around the truth of 1. We notice that
the observed data log-likelihood method with no fixed parameters results in greater spread in
estimated Sx compared to the other methods. This is due to the more difficult task of jointly
estimating 8 and 6, resulting in less efficient estimates with greater variability.

Figure B.4: Estimated ¢ across 500 simulations
(a) Setting 1 (b) Setting 5
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B.3 Simulation 2: non-ignorable sampling with perfect phenotype classifica-
tion

B.3.1 Evaluating estimator of sampling probabilities

In this section, we demonstrate the ability of the method in Elliot (2009) to reasonably recover
the sampling probability tied to the non-probability sample via simulation. Given the non-
probability sample and a simple random sample drawn from the same population, we use the
following equations to estimate the selection probabilities into the non-probability sample

f(DIS=1,W)f(W|S=1)P(S=1)
f(D’Semt =1 W) (W’Semt = 1)P(S€xt = 1)

B - P(S=1W,D,Sqy = 1)
_P(Semt—]-|D7W)1_P( _1‘W,D,Sall_1)

P(S =1|D,W) = P(Seqt = 1|D, W)

We estimate P(S = 1|D, W) based on distributions of W and D|W as above. When we simulate
data such that selection depends on D and W and W is independent of D (Setting 1 in Table
B.1), we obtain the estimated selection probabilities shown in Figure B.7. In this case, the
true selection probability depends on both D and W, and modeling conditional only on W (to
estimate P(S = 1|WW)) does not quite hit the mark. When we use the above method to estimate
P(S = 1|W, D), however, we often do a reasonable job of recovering the sampling probabilities.
We note that the above methods are not guaranteed to produce probabilities less than 1, and
we apply an additional thresholding step that assigns all probabilities greater than 1 to the
value 1. This explains the bending behavior we see for some of the predicted probability lines
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in Figure B.7.

Figure B.7: Estimated sampling probabilities for 10 simulated datasets
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B.4 Simulation 3: non-ignorable sampling and phenotype misclassification

In this section, we explore the performance of our proposed strategies for estimating sensitivity
and sampling/calibration weights when both phenotype misclassification and potential selection
bias are present. We explore a simulation setting where sensitivity is roughly 65% and in which
both W and Z are marginally related to D. Sampling truly depends on both D and W, which
corresponds to Setting 2 in Table B.1.

B.4.1 Determining the sampling ratio
To determine 7 and ¢ jointly, we note that

P(D*=1S=1) 1-P(D=1)

i—P(D*=1S=1) P(D=1) (Eq. S4)

(R

We can use this relationship to plot a curve relating 7 and ¢ as shown for 500 simulations
in Figure B.8. True values for ¢ and 7 are plotted as red lines, and we can see that the
predicted curves intersect the true values. Using this plot, we can estimate either 7 or ¢ by
fixing a value for the other. In general, we can use our understanding of the problem and
data to determine reasonable choices for 7. Additionally, this can be used as a sensitivity
analysis/tuning parameter, and analysis can be repeated for various values of 7.

B.4.2 Estimating sensitivities

In this section, we evaluate the proposed methods for estimating sensitivity when we have both
phenotype misclassification and selection bias. Suppose first that we estimate ¢. One strategy is
to estimate ¢ given 7 by inverting the equation in Fq. S4. Alternatively, we could also estimate
¢ using fixed w assuming non-sampled patients would have the same marginal sensitivity as the
sampled patients (not known in main paper). We can express ¢ as follows:

Method 1: Given 7, we estimate ¢ = P(D* = 1|S = 1)FP(D:1)+P(D:0)

7P(D=1)
Method 2: Given w, we estimate ¢ = 13(1]2)7*:1) where p* = %
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Figure B.8: Predicted 7 across different potential marginal sensitivities across 500 simulations
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Figure B.9 provides the estimated marginal sensitivity across 500 simulations and applying
various estimation methods, where the horizontal line represents the truth. We evaluate these
expressions for ¢ either assuming that we know true 7 or that various forms of w are available.
We consider w specified using the true P(S = 1|W, D) model, using estimated P(S = 1|W, D*),
and using estimated P(S = 1|WW) (ignoring D entirely). We can see that the average estimated
sensitivities across weighting methods that incorporate outcome information tend to be very
close to the truth, and these estimates are better when true P(S = 1|W, D) is used. When
outcome information is not used to define w, we can see substantial bias in the resulting estimate
of ¢ (assuming sampling does indeed depend on D). We notice that the estimates of ¢ using
poststratification weights given W and D* have very small variability. This is because we used
true ¢ to obtain the weights, which were then used to estimate ¢. In practice, we do not expect
this same accuracy to be seen. Estimated ¢ using true 7 also performs well.

Figure B.9: Estimated marginal sensitivity for 500 simulations:
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Suppose instead that we want to estimate ¢y (X). We can estimate this as follows:
Method 1: Given 7, we fit the following model for D*|X,S =1
P(D*=1|X,5=1)

FP(D=1]X L ~
fP(D:l|g()+IJ|(D):O\X) - P(D*=1X,5=1)

o = By + Bx X = logit(cyrue(X))
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where P(D = 1|X) or P(D =1|X) = P(D = 1|Xsy) is assumed to be known.

Method 2: Given w, we fit a weighted version of the following regression model
P(D*=1|X,5=1)

P(D=1|X)-P(D*=1|X,5=1)

to the non-probability sample using weights w.

Method 3: Given w, maximize the weighted observed data log-likelihood.

log = fBo+ BxX

Method 2 for estimating ¢y (X) is not presented in the main paper but could also be used
if w were known under the assumption that ¢ (X) is the same for sampled and non-sampled
patients.

Figure B.10 shows the results for Methods 1-2. In the left panel, we provide boxplots of
the estimated [Sx obtained using the above methods across 500 simulations. These values are
reasonably well-centered around the true value of 1, but we note that the weighting methods
using D* have slightly worse performance. This is likely due to the replacement of P(S =
1|W, D) with P(S = 1|W, D*) for weighting.

The right panel shows the estimated individual-level sensitivity values ¢ (X) for a single
simulated dataset using various methods. Horizontal lines correspond to the estimated ¢, and
the gray dotted line indicates equality between the true and estimated sensitivity values. This
plot demonstrates that the above methods can do a good job of recovering the true sensitivity
values when 7 or w is well-specified.

Figure B.10: Properties of estimated cgpye(X)
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B.4.3 Estimating sampling weights

Determining w is less straightforward than specifying 7. Given true ¢ or c¢yrue(X), we estimate
P(S = 1|W) and P(S = 1|W, D*) using the method in Web Appendix A.7. Figure B.11
provides estimated values for P(S = 1|D*, W) and P(S = 1|W) for 10 simulated datasets. The
simulation truth here is that sampling depends on both D and W. We can see that P(S = 1|W)
does a poor job at recovering the target distribution. However, our proposed approach can do
a reasonable job at estimating the true P(S = 1|D*, W). Both of our estimated probabilities,
however, do not fully capture the true P(S = 1|D,W). Therefore, there may be a potential
for resulting bias in estimated 6. We saw evidence of a small negative impact of replacing
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P(S =1|D,W) with P(S = 1|D*, W) on estimated ¢ previously.

Figure B.11: Estimated sampling probabilities for 10 simulated datasets
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C Data analysis in MGI

C.1 MGI at a glance

Table C.1 provides descriptives for the MGI patients used in our analysis. We are particularly
interested in length of follow-up and the number of visits to Michigan Medicine, since we
hypothesize these variables may provide insight into phenotype misclassification. Analyses
were limited to unrelated patients of recent European descent.

Many patient selection mechanisms went into generating our analytical dataset. If we define
our target population as the US adult population, then we have a mechanism by which patients
from the population enter the Michigan Medicine EHR. From there, patients must go to a MGI
recruitment clinic, be approached for consent, and then consent to have their data included in
MGI (which requires participants to donate biosamples and allows researchers EHR access).
These various mechanisms are summarized in Figure C.1.

Table C.1: Descriptives of MGI Dataset, N = 40,101

N (%) or mean (min-max)
48.8 (1-95)
56.7 (18-103)

Age at first diagnosis (years)
Age at last diagnosis (years)

Female
Cancer diagnosis

21,021 (52.4)
21,345 (53.2)

Follow-up time (years) 8.0 (0-40.2)
Number of visits 84 (1-1,323)
Number of unique phecodes 68.5 (1-608)

Figure C.1: Visualization of data generation mechanisms for MGI. Each layer corresponds
to a stage of patient selection, and the sixth layer corresponds to misclassification of the true
disease status, likely related to each patient’s observation process.

(1) In Michigan or US population

(2) Seen at Michigan Medicine !

(3) Visited catchment clinic :

(4) Approached for consent :

(5) Consented, included in MGI |

Predictor of interest "True” disease status

1
length of follow-up
number of visits
1
1

Derived disease status

Patient characteristics
e.g. age, gender

(6) Disease observed?
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Table C.2: Relationship between MGI examples and conceptual model

Example D D Z X w

1 latent disease status* disease phecode age™* gender age, follow-up (years), n/a
log(visits per follow-up year)

2a cancer phecodef corrupted phecode gender follow-up (years), gender n/a

2b latent cancer status cancer phecode gender age, follow-up (years), D, age,

log(visits per follow-up year) | gender

3 latent AMD?* status AMD phecode genotype, age, age, follow-up (years), D, age

batch, gender, | log(visits per follow-up year)
PCs 1-4

* cancer of any type, colorectal cancer, melanoma, diabetes, and hypothyroidism
** age at last diagnosis in EHR

t takes value 1 if patient has any phecode corresponding to cancer diagnosis

1 age-related macular degeneration

C.2 MGI example 1: factors related to sensitivity

In this section, we explore factors related to sensitivity for several diseases in MGI, includ-
ing cancer of any type, colorectal cancer, diabetes, hypothyroidism, and melanoma. For this
analysis, we do not attempt to account for potential selection bias. We speculate that higher
sensitivity may be related to longer follow-up time and a greater number of unique visit days in
the EHR. All chosen diseases are associated with greater age, so we incorporated age into the
model for sensitivity as well. For each of several diseases, we apply the methods in Section 3.3
to estimate /3 and the corresponding patient-specific sensitivity estimate, crue(X). We adjust
for gender and age in the disease model.

Figure 6a shows the resulting estimated § for various EHR-derived disease variables in
MGI, and Figure 6b shows the distributions of estimated sensitivity across patients in MGI
for different diseases. There are several surprising results. Firstly, the estimated distribution
of sensitivity for diabetes indicated poor sensitivity on average. Recall, many patients in MGI
were recruited prior to surgery. We expect it to be routine for doctors to inquire about diabetes
status prior to surgery. While diabetes status may well be recorded in doctors’ notes, it may
not always be recorded in the EHR as a diagnosis code. We would expect higher estimated
sensitivity values across the board if we defined EHR-derived disease status using more ad-
vanced phenotyping practices. Interestingly, the estimated sensitivity values for overall cancer
diagnosis were generally high compared to the other diseases. We speculate that this may be
due to routine collection of information about historical cancer diagnoses.
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C.3 MGI example 2a: association between cancer diagnosis and gender

Suppose we treat EHR-derived cancer diagnosis as the truth, D.Given D, we then impose
misclassification (generate D*) using two different mechanisms: (1) patients with longer follow-
up are more likely to have observed disease and (2) patients with longer follow-up and female
patients are more likely to have observed disease, each resulting in an average sensitivity of
about 70%. We apply methods in Section 3 to correct resulting bias in the gender odds ratio.
Results are shown in Figure C.2.

Figure C.2: Estimated MGI cancer and gender odds ratio after imposed misclassification and
correction (reference category = male)*
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C.4 MGI example 2b: association between cancer diagnosis and gender

In this section, we walk through an exploration into the relationship between cancer and gender
using data from MGI. First, we attempt to estimate the degree of misclassification in cancer
diagnosis and its relationship to patient-specific characteristics. Then, we explore the patient
selection mechanism from the population using data from NHANES and summary statistics
from the US Census and SEER. Finally, we put these pieces together and apply the methods
discussed in the main paper to estimate the relationship between cancer and gender, adjusting
for misclassification and the selection mechanism. An overview of the external data sources
used in this analysis can be found in Table C.3. Analyses were limited to unrelated patients
of recent European descent.

Table C.3: External data sources used for selection bias adjustment

Weight Type External Information Data Source
Poststratification  Age distribution in US 2010 US Census
Poststratification ~Cancer prevalence by age SEER 2016 Invasive Cancers*
IPW Individual data on age, gender, cancer status NHANES 2011-2016*

*Surveillance, Epidemiology, and End Results; National Health and Nutrition Examination Survey

C.4.1 Estimating sensitivity of EHR-derived cancer phenotype

Our estimators for sensitivity primarily rely on prior estimates of either 7 or IPW /calibration
weights w. Here, we explore sensitivity c¢;u.(X) as a function of different fixed values of 7.
We can express 7 as a function of the data and unknown parameter ¢ as in Fq. 8. Using the
observed data, we obtain the relationship expressed in Figure C.3a.

Given several possible values of 7 (in particular, 25, 50, 100, and 250), we want to calcu-
late patient-level sensitivities cirue(X) using Eq. 9. This estimator also requires us to specify
P(D = 1]X). We expect true cancer status to be related to both the length of follow-up
and the number of visits in the EHR, and we do not know the true relationship between
cancer status and these variables. However, we can obtain an estimate of the relationship
between age and invasive cancer prevalence through 2016 using SEER (Surveillance, Epidemiol-
ogy, and End Results) data resources available at https://seer.cancer.gov/csr/1975_2016/
results_merged/topic_prevalence.pdf. Defining P(D = 1|X) = P(D = 1| Xg,) to be these
prevalence rates by age, we can estimate ¢y (X) across different values of 7.

The sorted sensitivity estimates across values of 7 are shown in Figure C.3b, and Figure
C.3c shows corresponding estimates for 3.

In addition to estimating cgrue(X) using Eq. 9, we can also estimate cgpqe(X) ignoring the
potential selection bias using the joint estimation strategy in Section 3.3 based on the observed
data log-likelihood. When selection bias is present, the observed data log-likelihood method will
provide a poor estimate of 8, but we hypothesize that the estimated S may still provide some
insight into ¢ (X). This seems reasonable since the impact of selection would enter the like-
lihood through offset term r(Z) in the disease model. Failure to include r(Z) in the model
would be expected to impact 6 more strongly than 5. We plot the sensitivity estimate from the
observed data log-likelihood method in Figure C.3b as well. The corresponding estimates for
ef are 1.77 (95% CI: 1.70, 1.85) for log(visits/follow-up), 1.13 (95% CI: 1.12, 1.14) for follow-up
years, and 1.80 (95% CI: 1.75, 1.87) for age.

Knowing nothing else about 7, we will use the estimated sensitivity values ¢y (X) obtained
assuming 7 = 250. We chose this value given the similarity between its predicted sensitivity
values and values from the observed log-likelihood method, which did not rely on any outside
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information. In practice, it may be desirable to repeat the target analysis for several different
values of 7.

Figure C.3: Sensitivity estimation
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C.4.2 Estimating poststratification weights using population summary statistics

We first obtain US Census summary statistics describing the age distribution of the US popu-
lation from https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml and com-
pare the US age distribution to the distribution of patient ages at the first and last times of
follow-up in MGI. Figure C.4 shows the results. We can see that the age distribution in MGI
strongly differs from the US population. In particular, MGI patients tend to be older than
patients in the general population.

We then obtain US overall invasive cancer prevalence rates by age from SEER at https:
//seer.cancer.gov/csr/1975_2016/results_merged/topic_prevalence.pdf. We compare
those rates with observed cancer rates in MGI in Figure C.4, where these rates in MGI are
either based on the age of last diagnosis or estimated using a more complicated prevalence
estimate that incorporates the length of follow-up for each patient. Using the above quantities,
we construct several different versions of the poststratification weights. Here, we define age to
be the age at last follow-up.

VERSION 1: By age distribution only, where w o f(age)/f(age|S = 1).
VERSION 2: By age and cancer, ignoring misclassification

[1 — P(D = 1]age)]' ™" [P(D = 1]age)]”” f(age)
f(D*|age, S =1)f(age|S = 1)
VERSION 3: By age and cancer, correcting for misclassification
[1 — ctrue(X)P(D = 1]age)]' ™" [crue(X)P(D = 1]age)]”” f(age)
f(D*|age, S = 1) f(age|S = 1)

where ciryue(X) is estimated as discussed previously.

w X

w X

Figure C.4: Comparing age and cancer distributions in MGI and US*
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* Dx = diagnosis. Cancer prevalence in MGI was calculated either using the age of last diagnosis (denoted by
“last dx”) or using a better prevalence formula that incorporates the length of follow-up for each patient (denoted

by “prevalence”). The age distribution in MGI was calculated either using the age at the first or last diagnosis
in the EHR.
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C.4.3 Estimating sampling probabilities using NHANES

In this section, we use an external probability sample from the US population of interest to
obtain sampling probabilities (w) for inverse probability weighting. In particular, we con-
sider publicly available NHANES (National Health and Nutrition Estimation Survey) data
from 2011-2016 consisting of N=28,709 patients with recorded age, gender, and cancer di-
agnosis history (yes/no). These data are available at https://wwwn.cdc.gov/nchs/nhanes/
continuousnhanes/default.aspx?BeginYear=2011. We estimate several versions of w incor-
porating outcome information in different ways as follows, where age in MGI is defined as the
age at last follow-up in the EHR.

VERSION 1: Sampling probability estimated as a function of age and gender using Fq. 7

P(S = 1|age, gender, Sy = 1)
1 — P(S = 1]age, gender, Sy = 1)
VERSION 2: Sampling probability estimated as a function of age, gender, and cancer status

but not correcting for misclassification (using observed cancer status D* as if it were D in the
non-probability sample in Eq. 7)

P(S = 1|age, gender) = P(Sez: = 1|age, gender)

P(S = 1|age, gender, cancer)

P(S = 1|age, gender, ySar =1
= P(Sezt = 1|age, gender, cancer) ( [age, gender, cancer, Sy = 1)

1 — P(S = 1]age, gender, cancer, Sy = 1)

VERSION 3: Sampling probability estimated as a function of age, gender, and cancer status

correcting for misclassification using Fq. 10

D*|S =1, age, gender)
f(D*|age, gender)

P(D* = 1|age, gender) & ¢y (X )P(D = 1|age, gender)

P(s = 11p*,w) = L4

P(S = 1]age, gender)

where S, is an indicator corresponding to the combined MGI and NHANES samples and Se,¢
is an indicator corresponding to inclusion in NHANES. P(S.;: = 1|age, gender) is not available
directly, but we estimate this distribution using beta regression on the provided NHANES
sampling weights as suggested by Elliot (2009). P(D* = 1|S = 1, age, gender) was estimated
using the EHR data, and P(D = 1|age, gender) was estimated using NHANES.

Figure C.5 shows the resulting selection probabilities as a function of the age at last
diagnosis up to proportionality. The weights ignoring the outcome look strikingly different than
the two version of the weights that incorporate the outcome. For each version of the weights,
the inverse probabilities are then scaled to sum to the number of patients in MGI for use in
estimation of # later on.

Figure C.5: Estimated sampling probabilities (up to proportionality) using various methods
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C.5 MGI example 3: correcting GWAS results for age-related macular de-
generation

In this section, we apply the proposed methods to correct bias associated with the relation-
ship between genetic factors and age-related macular degeneration (AMD) in MGI. We define
whether patients have age-related macular degeneration in MGI as whether they ever received
the phenotype code (aggregate of ICD codes) “362.2”, which corresponds to “degeneration of
macula and posterior pole of retina.” This indicator becomes D*, with latent D representing
true AMD status for these patients up to their current age. We note that this definition may in-
clude some patients whose macular degeneration was not age-related. In response, we restricted
analyses to patients aged 50 and older. We then restricted our focus to a matched subsample of
MGI participants, where up to 10 unique patients without AMD were matched to each patient
with AMD. Matched controls were identified using exact matching on gender and genotyping
array and then applying nearest neighbor propensity score matching on age at last diagnosis
and the first four principal components of the genetic data using a matching caliper of 0.25.

For each patient in MGI, a genetic profile spanning millions of genetic loci is available.
Using these data and adjusting for age, gender, genotyping array, and the first four principal
components of the genetic data, we can estimate the relationship between AMD diagnosis and
each one of the genetic loci using logistic regression. These variables represent Z. We are in-
terested in comparing the “naive” AMD log-odds ratio estimates we get for several genetic loci
of interest in MGI to corresponding estimates from a well-designed GWAS study.

Reference GWAS results were based on data from 16000 advanced AMD cases and 18000 con-
trols as part of the International AMD Genomics Consortium (IAMDGC, http://amdgenetics.
org). A small fraction of patients in MGI may also have been included in the IAMDGC dataset.
We will use these IAMDGC GWAS results (denoted “reference” GWAS) as a comparative gold
standard. We selected 44 independent genetic loci most strongly related to AMD in this large
reference GWAS based on better-quality data. In Figure C.6, we compare the 44 ITAMDGC
GWAS estimates to the estimates from MGI. Point estimates from MGI appear to be attenuated
relative to the estimates seen in the IAMDGC GWAS. There are several explanations. Firstly,
we are considering loci that are most strongly related to AMD in the IAMDGC GWAS. These
loci will naturally have very strong estimated log-odds ratios, which may be artificially inflated
due to the “winner’s curse.” At the same time, we expect there to be some potential for bias in
the MGI point estimates due to misclassification of the AMD phenotype and potential selection
bias. Another explanation for smaller effect estimates in MGI is that less advanced AMD cases
were also included, as were cases of macular degeneration in older adults that may not have
been age-related. In this section, we apply our bias-correction methods to address bias in MGI
and compare the resulting estimates with the IAMDGC GWAS results.

Figure C.6: Genome-wide significant loci for AMD and corresponding log-OR in MGI. The
diagonal red line corresponds to equality, and the blue line corresponds to a linear regression
fit to the point estimates.
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C.5.1 Estimating sensitivity

First, we estimate AMD sensitivity as a function of unknown marginal sampling ratio, . We
can express 7 as a function of the data and unknown parameter ¢ as in Fq. 8. Using the
observed data, we obtain the relationship expressed in Figure C.7a.

Given several possible values of 7 (in particular, we consider 1,2,5,10,50,100, and 150), we

calculate patient-level sensitivities cipye(X) using éyue(X) ~ min ( P(l:;(:;l)f")f)zl) ,1). We
FP(D=1|X)+P(D=0]X)
assume X contains age at last diagnosis, length of follow-up in years, and the log of the number

of visits per follow-up year. We approximate P(D = 1|X) with P(D = 1|X, = age). We
obtain the relationship between X, —age and AMD status D from NIH as described below.
The sorted sensitivity estimates across values of 7 are shown in Figure C.7b.

In addition to estimating ¢y (X) fixing 7, we also estimate cyrye(X) ignoring the potential
selection bias using the joint estimation strategy in Section 3.3, where age and gender are
included in the disease model. We plot the resulting sensitivity estimate in Figure C.7b
as well. Knowing nothing else about 7, we will use the estimated sensitivity values cgpye(X)
obtained assuming 7 = 50. We chose this value given the similarity to predicted sensitivity
values from the observed log-likelihood method, which did not rely on any outside information.
In practice, it may be desirable to repeat the target analysis for several different values of 7.

Figure C.7: Estimating AMD sensitivity in MGI

(a) Sampling ratio 7 as a function of & (b) Estimated sensitivities c¢rue(X) across 7
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C.5.2 Estimating calibration weights

We estimate poststratification weights combining population summary statistics with our esti-
mates of sensitivity. In defining these weights, we combine estimates of the US age distribution
available for 2010 from the US census with US macular degeneration prevalence rates by age for
white Americans from the NIH National Eye Institute online summary statistics (also available
for 2010). We use these prevalence rates to estimate the following

o F(D7age) 1= crue(X)PD = Lage)] 7 [erue(X)P(D = 1jage)]”” f(age)

F(D* agels = 1) F(D*Jage, 5 = 1) f (agel§ = 1)
Here, Wy, contains age only and P(D* = 1|age, S = 1) is estimated directly using MGI.

C.5.3 Bias-corrected genetic associations

Using the sensitivity estimates and calibration weights, we apply the methods discussed in Sec-
tion 5 to estimate misclassification and selection bias-corrected 6 for each one of the 44 genetic
loci of interest. We apply three bias-correction strategies (1) accounting for misclassification
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only (so setting all weights w = 1) and (2) accounting for misclassification and also weighting
by poststratification weights w. We then compare these resulting 6 estimates with the estimates
from the IAMDGC GWAS. We calculate the sum of squared differences between each of the 44
estimates in MGI and the IAMDGC GWAS along with the sum of the absolute differences. We
also compare Spearman correlation and Lin’s concordance correlation coefficient for the point
estimates across the 44 loci. Finally, we present the average ratio of the estimated variance
relative to the variance in the IAMDGC GWAS estimate. Results are shown in Table C.4.

With the exception of the method that assumes constant sensitivity across patients (the
method in which we approximate the D*|Z distribution), the methods adjusting for selection
bias through calibration weighting tend to do a better job at recovering the IAMDGC GWAS
point estimates. The non-logistic link function method and maximization of the observed data
log-likelihood (both adjusting for selection through calibration weighting) produce point esti-
mates closest to the IAMDGC GWAS estimates. Figure C.8 shows the difference between
the resulting estimated log-odds ratio estimates and the IAMDGC GWAS estimates for the 44
genetic loci (along the x-axis). No method uniformly maps the point estimates to the IAMDGC
GWAS estimates. This does demonstrate, however, that the point estimates can sometimes
differ substantially between the various methods for a given genetic locus, and these differences
here are more pronounced for extreme values of the IAMDGC GWAS 0 (far left and far right
values).

Table C.4: Comparison between IAMDGC GWAS log-OR and bias-corrected log-OR. across
44 genetic loci. Shaded boxes indicate the methods with the best performance for each column
metric.

Sum of squared Sum of absolute =~ Spearman  Lin’s CCC* Average relative

differences differences Correlation variance

TAMDGC GWAS 0 0 1 1 1

Naive analysis 13.77 9.38 0.43 0.61 5.86
Approx. of D*|Z 12.27 8.31 0.42 0.73 14.10
Approx. of D*|Z + w 12.73 9.48 0.58 0.60 12.49
Non-logistic link 13.09 9.85 0.38 0.68 14.81
Non-logistic link + w 11.42 6.03 0.63 0.77 15.01
Obs. data log-lik 12.84 8.66 0.41 0.75 18.58
Obs. data log-lik + w 10.80 5.86 0.63 0.77 22.66

* concordance correlation coefficient

Figure C.8: GWAS log-OR estimates after bias correction
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D Implementation

D.1 R package SAMBA

Accompanying this paper, we have developed an R package called SAMBA (sampling and mis-
classification bias adjustment) for implementing the proposed methods. Methods implemented
include estimation of ¢ and ¢4 (X ) with and without selection bias adjustment and estimation
of 0 using the methods in Section 3 and 5 in the main paper. We assume that IPW /calibration
weights w used for selection bias adjustment are estimated separately by the user, perhaps using
the methods developed in this paper. We demonstrate how we can use SAMBA to perform the
proposed analyses through the following pseudo-code:

Downloading R package:

devtools::install_github("umich-cphds/SAMBA" ,build_vignettes = TRUE, build_opts = c("--
no-resave-data", "--no-manual"))
library (SAMBA)

Estimating ¢ and ¢ (X):

estimated_sensitivity = sensitivity(X = sensitivity model predictors,
Dstar = observed disease indicator,
r = marginal sampling ratio if desired,
prev = assumed relationship between disease and X)

Estimating 0:

### Approximation of D*|Z (Sections 3.1 [unweighted] and 5.1 [weighted])
approx = approxdist(Z = disease model predictors,

Dstar = observed disease indicator,

weights = IPW or calibration weights if desired,

c_marg = marginal sensitivity)

### Non-logistic link function method (Sections 3.2 [unweighted] and 5.2 [weighted])
nonlog = nonlogistic(Z, Dstar, weights,
c_X = patient-specific sensitivity estimates)

### Observed data likelihood maximization (Sections 3.3 [unweighted] and 5.3 [weighted])
loglik = obsloglik(Z, X, Dstar,

param_init = starting values for (theta, beta),
betaO_fixed = fixed betal if desired,
weights)

For more details about this package, we refer readers to the instructive vignette.

browseVignettes (‘SAMBA’)
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D.2 Automating methods for large-scale association studies

In the main paper, we focus on the setting with a single disease D of interest and a single predic-
tor set, Z. In modern EHR data analysis, we are often interested in studying many associations
at once. Two common study designs are genome-wide association studies (GWAS), where we
relate a single D to many different Z’s, and phenome-wide association studies (PheWAS), where
we relate many different diseases (many D’s) to a single Z. Increasingly, researchers are also
interested in studying associations across both the phenome and genome (many D’s and Z’s).

GWAS: For GWAS, we can adjust for phenotype misclassification and selection bias using
a single set of sampling weights and sensitivity estimates, since the disease outcome is the same
for each of the associations of interest. Given estimates of sensitivity and weights w, we can then
estimate 0z for each Z of interest using the methods discussed in this paper. We discuss three
general methods: (1) approximation of the D*|Z distribution, (2) regression modeling with a
non-logistic link function, and (3) joint estimation of sensitivity and disease model parameters.
Given the large numbers of associations of interest and the comparative slowness of estimation,
we do not recommend method (3) in the GWAS setting. The first two methods, however, can
be easily implemented and scalable to a large number of association tests.

We first consider the setting where we are only doing adjustment for misclassification and
not for selection bias. In this case, we are looking at the methods in Section 3. With sensitivity
¢ or ciryue(X) estimated, both methods (1) and (2) are simple to implement. Method (1), in
particular, will be very fast to implement genome-wide, since it involves a simple transformation
of the uncorrected point estimates. Therefore, it does not require any models to be re-fit after
the uncorrected analysis is performed. The main limitation of method (1) is that it requires
strong assumptions about the sensitivity to hold. In particular, we require that ¢(Z) can be
reasonably approximated by constant ¢, which occurs if X is independent of Z given D. This
is a strong assumption, which may not always hold. When this assumption does hold, however,
this method will result in corrected and uncorrected point estimates that differ but p-values that
are the same. When the p-values are of sole interest, therefore, application of method (1) bias
correction ignoring selection bias will have no impact on p-values. Method (2) can be applied in
the more general setting where X1 is independent of Z given D. This allows adjustment factors
in the disease model to be related to sensitivity. Method (2) p-values and point estimates will
differ relative to uncorrected analysis. Compared to method (1), method (2) will be slower,
but it will be on the order of standard logistic regression. Therefore, method (2) should be
reasonably scalable to many association tests when sensitivity (and sampling weights if used)
are already estimated.

Now, we consider the setting where we are doing adjustment for selection bias or misclas-
sification and selection bias. Similar In this case, the uncorrected and corrected p-values will
be different, and the point estimates will also be impacted. Either method (1) or method (2)
can be implemented, and the comparison between methods is similar to the setting ignoring
selection bias adjustment.

PheWAS: For PheWAS, a separate set of sensitivities and sampling weights are estimated for
each association of interest. If we want to perform 2000 tests, for example, we will need to
estimate sensitivity and sampling weights (if we adjust for both misclassification and selection)
for 2000 different diseases.

Suppose first that sensitivities (¢ and cryue(X)) and weights w have already been estimated
for each association of interest in the Phe WAS. Methods (1) and (2) above can then be applied
across all associations as in the GWAS setting described previously. Method (3) may be more
feasible to implement for thousands of parallel tests in a PheWAS rather than millions in a
GWAS, but estimation will be slower than for the other two methods. Therefore, the results on
scalability described for GWAS above apply here.
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The primary challenge for applying the proposed methods for PheWAS is in estimating
sensitivity and sampling weights, which will differ for each association test. Sampling weights,
in particular, are challenging to specify even when we have a single association of interest, and
scaling this estimation phenome-wide would be very difficult. Currently, our proposed methods
will be very difficult to apply phenome-wide when both misclassification and selection are being
accounted for when sampling weights are not known. Instead, we will focus on the setting where
we assume selection is ignorable and want to estimate 6 and sensitivities as in Section 3.

Firstly, we can estimate sensitivity jointly with 6 through maximizing the observed data
log-likelihood as in method (3) above, and we will not need to separately estimate sensitivity
and can just implement method (3) for each association of interest. Two other strategies were

% and (b) estimation of ¢pye(X)

proposed for estimating sensitivity are as follows: (a) ¢ =
using Fq. 6 and given P(D = 1|X).

The primary challenge for automating (a) is that it requires us to known the population
marginal disease rate for all diseases of interest. These rates may be easy to obtain for many
common diseases (e.g. cancer statistics from SEER or recent statistics from NHANES), but it
may be difficult to obtain P(D = 1) for all diseases of interest in the phenome. Suppose we
focus our attention to diseases for which the population disease rates are known. In this case, ¢
can be easily estimated for all associations of interest and applied to estimate 67 using method
(1).

Additionally, suppose we have gold standard known 65 for some D and Z. We can use the
expression in Fq. 5 and an estimated association using our misclassified EHR-derived D* to
back out a reasonable value for ¢ for that disease as follows:

6(1 - P(D* = 1)) — QZ,goldstandardP(D* = 1)
¢— P(D* = 1) QZ,goldstandard - H%CP(D* = 0)

If we have such gold standard information (e.g. associations with gender) for many diseases,
we can use this information to estimate ¢ for many diseases of interest. One example source for
such gold standard associations might be the NHGRI GWAS Catalog, which compiles estimated
associations between diseases and genotype information across a broad spectrum of diseases. If
we can duplicate those associations for diseases of interest in our EHR dataset, we can use that
information to estimate ¢ for each disease.

Suppose instead that we want to estimate cyue(X) and apply method (2). Estimation of
Ctrue(X) requires P(D = 1|X), which can be very difficult to specify for a large number of
diseases. In our data analyses in MGI, for example, we obtained an estimate for cancer using
SEER statistics. This method, therefore, may be difficult to implement phenome-wide at this
time.

~ QUC
9Z,goldstanda7‘d ~ HZ

41



References

Lauren J Beesley, Lars G Fritsche, and Bhramar Mukherjee. A Modeling Framework for Ex-
ploring Sampling and Observation Process Biases in Genome and Phenome-wide Association
Studies using Electronic Health Records. bioRXiv, pages 1-19, 2018.

S. W. Dufty, J. Warwick, A. R.W. Williams, H. Keshavarz, F. Kaffashian, T. E. Rohan, F. Nili,
and A. Sadeghi-Hassanabadi. A simple model for potential use with a misclassified binary
outcome in epidemiology. Journal of Epidemiology and Community Health, 58(8):712-717,
2004.

Michael Elashoff. An EM Algorithm for Estimating Equations. Journal of Computational and
Graphical Statistics, 13(1):48-65, 2004.

Michael R Elliot. Combining Data from Probability and Non- Probability Samples Using
Pseudo-Weights. Survey Practice, 2(3):1-7, 2009.

David A Freedman. On The So-Called “Huber Sandwich Estimator” and “Robust Standard
Errors”. The American Statistician, 60(4):299-302, 2006.

Sebastien Haneuse and Michael Daniels. A General Framework for Considering Selection Bias
in EHR-Based Studies : What Data are Observed and Why ? A General Framework for
Considering Selection Bias in EHR-Based. eGEM, 4(1):1-17, 2016.

Tzon-Tzer Lu and Sheng-Hua Shiou. Inverses of 2 by 2 Block Matrices. Computers and Math-
ematics with Applications, 43(1):119-129, 2002.

John M Neuhaus and Nicholas P Jewell. A Geometric Approach to Assess Bias Due to Omitted
Covariates in Generalized Linear Models Author. Biometrika, 80(4):807-815, 1993.

Ori Rosen. Mixture of Marginal Models. Biometrika, 87(2):391-404, 2000.

42



	Analytical Results
	Proof of Eq. 3 and Eq. 4
	Bias under naive analysis
	Proof of Eq. 5 and its extension to non-ignorable sampling
	Replacing c(Z) with ctrue(X)
	Proof of Eq. 6 and Eq. 9
	Jointly estimating  and 
	Proof of Eq. 7 and Eq. 10
	Proof of Eq. 8
	Combining multiple complicated selection mechanisms
	Estimating standard errors

	Simulations
	Simulation study set-up
	Simulation 1: phenotype misclassification with ignorable sampling
	Simulation 2: non-ignorable sampling with perfect phenotype classification
	Simulation 3: non-ignorable sampling and phenotype misclassification

	Data analysis in MGI
	MGI at a glance
	MGI example 1: factors related to sensitivity
	MGI example 2a: association between cancer diagnosis and gender
	MGI example 2b: association between cancer diagnosis and gender
	MGI example 3: correcting GWAS results for age-related macular degeneration

	Implementation
	R package SAMBA
	Automating methods for large-scale association studies


