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Supplementary Methods 

Acquisition and Processing of EEG Data 

EEG data are acquired in the Massachusetts General Hospital Neurosciences Intensive 

Care Unit using a 19-electrode clinical XLTEK EEG system (Natus Medical Inc.; 

Pleasanton, CA) at a 200- or 256-Hz sampling rate.  We the process the data using 

EEGlab [1] and customized MATLAB code. All recordings are filtered (third-order 

Butterworth, zero-phase shift digital filter, 1-30 Hz) and re-referenced using the Hjorth 

Laplacian transform to optimize spatial localization and avoid contaminating activity at the 

reference [2]. We perform artifact rejection with EEGlab using independent component 

analysis. Following artifact rejection, we estimate the power spectral density of the voltage 

activity recorded at each electrode. Absolute power estimates are averaged within four 

frequency bands: delta [1-3 Hz], theta [4-7 Hz], alpha [8-13 Hz], beta [14-30 Hz], allowing 

calculation of the alpha-delta ratio. Additional details regarding EEG acquisition and 

processing have been previously described [3]. 

 

Acquisition and Processing of High Angular Resolution Diffusion Imaging (HARDI) Data 

All HARDI data acquisition and processing methods, as well as the CP calculation, have 

been previously described by our group [4].  Patients are scanned on a 3 Tesla Skyra 

MRI scanner (Siemens Medical Solutions) in the Massachusetts General Hospital 

Neurosciences Intensive Care Unit using a 32-channel head coil. HARDI sequence 

parameters are 2 mm isotropic voxels, 60 diffusion-encoded volumes (b=2000 s/m2), 10 

“b0” volumes (b=0 s/m2) and a 220 mm FOV. The scans are acquired using simultaneous 
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multi-slice (SMS) imaging [5] with TR=6700 ms, TE=100 ms, echo spacing 0.7 ms, and 

epi factor 110.   

We pre-process the HARDI data in FSL (FMRIB, Oxford, UK), which includes brain 

extraction, eddy current and bulk motion correction. Diffusion parameters are estimated 

using bedpostx with default parameter settings. Probabilistic tractography is performed 

using probrackx2 with 5000 samples per voxel, curvature threshold of 80°, max steps 

2000, step length 0.5 mm, minimum length 0, no anisotropy constraining, and no distance 

correction.   

To calculate a connectivity probability (CP) between specific seed and target 

regions of interest (ROI), we use each target ROI as a waypoint and termination mask in 

probtrackx2. We then repeat the analysis swapping seed and target. The CP is then 

calculated as a weighted average of the relative number of tracts reaching target from 

seed and relative number of tracts reaching seed from target: 

 

𝐶𝑃 = 	
𝑘1 + 𝑘2
𝑛1 + 𝑛2 

 

where 

𝑘1 = 𝑡𝑟𝑎𝑐𝑡𝑠	𝑓𝑟𝑜𝑚	𝑠𝑒𝑒𝑑	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑡𝑎𝑟𝑔𝑒𝑡  

𝑘2 = 𝑡𝑟𝑎𝑐𝑡𝑠	𝑓𝑟𝑜𝑚	𝑡𝑎𝑟𝑔𝑒𝑡	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑠𝑒𝑒𝑑  

𝑛1 = 5000	×	𝑠𝑒𝑒𝑑	𝑣𝑜𝑥𝑒𝑙𝑠	 

𝑛2 = 5000	×	𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑜𝑥𝑒𝑙𝑠	 
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This formula models CP as binomial distribution with each pi = ki/ni derived from ki tracts 

reaching the relative target from ni trials (5000 X seed voxels). With two samples (seed-

to-target and target-to-seed), the resulting P (CP) is a weighted average of the two pi, 

each weighted by ni trials.   

 

Calculation of the Predictive Biomarker, SVTA 

Once CP values are generated for each seed-target pair (e.g. ventral tegmental area 

[VTA] and target nodes of the default mode network [DMN]), these CP values are entered 

into an adjacency matrix for graph theoretical analysis using the Matlab-based Brain 

Connectivity Toolbox [6]. We use graph theoretic analysis to derive the hub strength, SVTA, 

of the VTA. This continuous variable represents the sum of the CPs of structural 

connections between the VTA and other nodes of the ascending arousal network (AAN) 

and the default arousal network (DMN), as measured by high angular resolution diffusion 

imaging (HARDI).  SVTA is a unitless value [7] calculated as 𝑆>?@ = 𝑎>?@A𝑤>?@AC
ADE  

where nodes are numbered j to N, aVTAj is the presence (a=1) or absence (a=0) of a 

connection, and wVTAj is the CP between the VTA and node j [6]. This metric has been 

used as a measure of a node’s “hubness” in previous brain network studies [8-11]. 

SVTA calculation will be performed using the Brain Connectivity Toolbox in MATLAB 

(Natick, MA) [6]. 

 

Acquisition and Processing of Resting-state Functional MRI (rs-fMRI) Data 

All rs-fMRI acquisition and processing procedures have been previously described by our 

group [12, 13], with the exception of the new SMS rs-fMRI sequence described here.  
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Patients undergo rs-fMRI on the same 3 Tesla Skyra MRI scanner and with the same 32-

channel head coil used for HARDI data acquisition. For registration, we acquire T1-

weighted multi-echo magnetization prepared gradient echo (MEMPRAGE) images in the 

sagittal plane: 176 slices, echo time=1.69, 3.55, 5.41, 7.27 ms, repetition time=2530 ms, 

1.0 mm3 isotropic resolution, matrix size=256x256, flip angle=7°, inversion time=1200-

1300 ms [14]. We perform rs-fMRI using an SMS blood-oxygen-level-dependent (BOLD) 

sequence with 622 seconds of data acquisition, 72 axial slices, echo time=30 ms, 

repetition time=1250 ms, voxel size=2.0x2.0x2.0 mm, and matrix size=106x106. Prior to 

rs-fMRI, we instruct each subject to “keep your eyes open and relax.”  

We process the BOLD rs-fMRI data using the CONN functional connectivity 

toolbox (www.nitrc.org/projects/conn) [15] for slice-timing correction, realignment, 

structural segmentation, normalization into Montreal Neurological Institute (MNI-152) 

space, and smoothing with a 6 mm full-width at half-maximum Gaussian kernel.  We use 

the artifact rejection tool (ART) to reject outlier volumes satisfying at least one of the 

following thresholds: normalized global BOLD signal Z ³ 3.0, absolute subject motion ³ 

0.5 mm, absolute subject rotation ³ 0.05 radians, scan-to-scan motion ³ 1.0 mm, and 

scan-to-scan rotation ³ 0.02 radians. For denoising, we use CSF and white matter 

principal components as nuisance covariates in accordance with the anatomical 

component-based noise correction method (aCompCor) [16, 17]. After denoising, we 

isolate low-frequency fluctuations with a low-pass temporal filter (0.008 to 0.09Hz). 

We investigate functional connectivity using a seed-based approach, in which the 

mean time series in a seed region is compared with the time series of all other voxels in 

the brain. For the VTA seed, we use the Harvard Ascending Arousal Network atlas.  For 
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the DMN, we use four 10-mm diameter spherical seeds: one in the medial prefrontal 

cortex (MPFC), one in the posterior cingulate cortex (PCC), and one in each of the left 

and right lateral parietal cortices (LP), as described by Raichle [18]. We generate a mean 

DMN time series by averaging the time series among the four DMN seeds [19]. To 

generate ZVTA-DMN, we calculate the Pearson’s correlation coefficient between the time 

series of the VTA seed and the mean time series of the DMN seeds, followed by Fisher 

Z-transformation for inter-subject comparison. Additional details regarding rs-fMRI data 

acquisition and processing can be found in Threlkeld et al. [12]. 

 

Development of a Normative Connectome Dataset 

To establish the normative dataset of SVTA, ZVTA-DMN, and alpha-delta values, we will enroll 

50 healthy adult volunteers aged ≥ 18 years old.   

 

Data Analysis: 

On Day 0, SVTA, alpha-delta ratio, and ZVTA-DMN will be measured for each patient. We will 

define a threshold for “preserved SVTA” – the lower bound of the 95% confidence interval 

from the 50-subject healthy control normative dataset – above which patients will be 

phenotyped as likely responders to IV MPH in STIMPACT Phase 2a.  Because the 

STIMPACT Phase 1 trial is focused on safety and dose-finding, all patients will receive IV 

MPH, regardless of their SVTA measures.  Rs-fMRI data will be analyzed to calculate  

ZVTA-DMN using our published methods [12].   

 

Power Calculation for STIMPACT Phase 1 
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We aim to detect, with high probability, a drug-related serious adverse event (SAE) that 

would prevent us from moving to Phase 2a.  Specifically, we designed the trial to have an 

90% chance of detecting any drug-related SAE that occurs with a frequency of ≥ 10%.   

Based on these criteria, we used the binomial equation to calculate our sample size: 1-

(1-p)n=y, where p=drug-related SAE rate, n=number of subjects, and y=chance of 

detecting the SAE.  Using a drug-related SAE rate of 10% (p=0.10) and requiring a 90% 

probability of detecting the SAE at least once (y=0.90), we calculate that a 22-subject 

cohort will be necessary to enroll in Phase 1.  We will determine the frequency of drug-

related SAEs at each dose, and if two drug-related SAEs occur at a dose 

(frequency~10%), that dose and all higher doses will be removed from the trial.  If two 

drug-related SAEs occur at the lowest dose, the trial will be stopped and Phase 1 will be 

repeated at a lower dose range. 

 

Physiological Monitoring and Analysis 

We acquire cardiac and respiratory waveforms through a pulse-oximeter and respiratory 

bellow (Physiological Monitoring Unit, Siemens Medical, Erlangen, Germany), 

respectively, when patients are at rest during the rs-fMRI scanning.   It is believed that 

the pulsatile nature of blood flow in the brain, as well as motion and magnetic field 

variations due to respiration, can cause artifacts in BOLD signal [20, 21].  Fluctuations 

relating to respiratory variation [22] and heart rate [23] have been proposed as 

‘physiological noise’ to be removed from BOLD signals in healthy subjects.  However, the 

contribution of these fluctuations to BOLD signals in patients with acute brain injuries is 

not completely understood.  Therefore, before respiratory variation and heart rate related 

7



 

fluctuations are removed, we examine the dynamic coupling between rs-fMRI signal 

changes and these fluctuations.   

We use wavelet transform coherence to examine the dynamic interaction between 

BOLD signal changes and respiratory variation/heart rate in the time-frequency domain.  

Wavelet transform coherence is a method for analyzing the coherence and phase lag 

between two time courses as a function of both time and frequency [24, 25].  The Matlab 

wavelet cross-spectrum toolbox developed by Grinsted et al. [25] is used.  An example of 

squared wavelet coherence between BOLD signal changes and respiratory variation in 

the left ventral diencephalon from a representative healthy subject and a representative 

patient with acute severe TBI is shown in Figure 5.  An example of squared wavelet 

coherence between BOLD signal changes and heart rate in the left ventral diencephalon 

from the same subjects is shown in Supplementary Figure 2.    

In Figure 5, the time series of respiratory variation and DBOLD in left ventral 

diencephalon are shown in the left column. By visual inspection, there are fast and slow 

components of the fluctuations in the time series which are contributed by different 

underlying physiological processes.  Squared wavelet coherence is plotted with x-axis as 

time (i.e. the time from the onset of resting-state run) and y-axis as scale which has been 

converted to its equivalent Fourier period to show the distribution of the fast and slow 

components of fluctuations (in the unit of seconds) in the time series (Figure 5, middle 

column).  Fourier period of 4 seconds indicates fast component of fluctuations and that of 

128 seconds (or ~2 minutes) indicates slow component of fluctuations.  The strength of 

interaction between respiratory variation and DBOLD is demonstrated by the magnitude 

of coherence in the range from 0 to 1, where warmer color represents stronger coherence 
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(close to 1) and cooler color represents weaker coherence (close to 0).  The magnitude 

of coherence can be conceptualized as a localized correlation coefficient between 

respiratory variation and DBOLD, where the x-coordinate in the coherence map provides 

the information on how fast the rate of fluctuations when respiratory variation interacts 

with DBOLD, and y-coordinate provides the time when this interaction occurs over the 

resting-state scan. The direction of the arrows in the coherence map provides the polarity 

of correlation.  A positive correlation is represented by the arrow pointing between 12 

o’clock and 6 o’clock positions on the right half of the clock (i.e. phase lag of 0±p/2 

between the two time series), while the arrow pointing to the left half of the clock 

represents a negative correlation (i.e. phase lag of 0±p/2 between the two time series).  

Significant interaction between respiratory variation and DBOLD is only considered when 

the magnitude of coherence exceeds 95% significance level (i.e. the area within thick 

contour of the unfaded region).  Therefore, a significantly strong positive interaction 

between respiratory variation and DBOLD occurs at the locations where small areas in 

dark red color within thick contour and a rightward pointing arrow are found.   

In the representative healthy subject, the components of fluctuations from 

respiratory variation and DBOLD that oscillate at the rates of 16-32 seconds (~0.03 to 

0.063 Hz) and 64 seconds (~0.016 Hz) have significantly strong interaction at 200-400 

seconds from the onset of the resting-state scan, suggesting that this part of the 

respiratory variation signals may have influence on the DBOLD signals.  To simplify the 

coherence results from two dimensions in squared wavelet coherence to one dimension, 

we average and normalize the significant coherence between the two time series over 

the time on x-axis (Figure 5, right column). Although we lose information about when the 
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interaction occurs, the features of oscillations in terms of frequency for the interaction 

between respiratory variation and DBOLD are retained.  While increased coherence is 

found between respiratory variation and DBOLD at the frequency range of 0.008 to 0.063 

Hz in the healthy subject, the coherence between respiratory variation and DBOLD in the 

same frequency range is diminished in the acute severe TBI subject. 

To remove the physiological noise contributed by the respiratory and cardiac 

activities, we use the RETROICOR algorithm [26] through the Physiological Noise 

Modeling (PNM) module in the FMRIB Software Library (FSL) [27, 28]. The time series of 

cardiac and respiratory waveforms are collected and aligned with the MRI volumes using 

trigger signals from the scanner. Peaks and troughs of the cardiac and respiratory cycles 

on the physiological time series are determined using a custom Matlab function (Matlab 

R2014a, Mathworks, Inc., Natick, MA, USA) and corrected on the graphical user interface 

incorporated in the function.  For the cardiac time series, the peaks and troughs indicating 

the systolic and end-diastolic phases of the cardiac cycles, respectively, are determined.  

For the respiratory time series, the peaks and troughs indicating end-inspiration and end-

expiration, respectively, are determined.  This step makes enables the FSL software to 

calculate the cardiac phases and respiratory phases on the physiological time series with 

pre-determined peaks and troughs.  While the cardiac phase advances linearly from 0 to 

2π during the time interval between two consecutive cardiac peaks and is reset to zero 

for the next cycle, the inspiratory phase spans 0 to π and the expiratory phase spans 0 

to -π for each respiratory cycle (Supplementary Figure 1).  Both the time series of cardiac 

phases and respiratory phases are used in RETROICOR to remove physiological noise 

in the rs-fMRI dataset. 
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STIMPACT Phase 1 Statistical Analysis 

We define a pharmacodynamic response for each patient by an MPH-related change in 

ZVTA-DMN or Alpha/delta relative to the patient’s own baseline variance in these biomarkers.  

To test the effect of IV MPH on ZVTA-DMN, we will measure changes in ZVTA-DMN at baseline 

(Day 0) and during treatment (Day 4). On Day 0 and Day 4, ZVTA-DMN will be compared 

between two 10-minute rs-fMRI time periods: the first 10 minutes of the scan versus 

minutes 10-20 of a subsequent 30-minute scan.  We select minutes 10-20 because 

positron emission tomography data indicate that the effects of IV MPH peak in the brain 

between minutes 10 and 20 [29].  The response criteria will be based on a single-subject 

comparison of the difference between ∆ZVTA-DMN(Day 0) and ∆ZVTA-DMN (Day 4) using the 

following formula: (∆ZVTA-DMN (Day 4) - ∆ZVTA-DMN (Day 0)) /√n   > 1.96, where n = the number of 

measurements (i.e. 4). Thus, if ∆ZVTA-DMN (Day 4) - ∆ZVTA-DMN (Day 0)  > 3.92 we will conclude 

that the patient is a responder.  This is the criterion for statistical significance at an alpha 

level of 0.05 if Z has a variance of 1.  To test the effect of IV MPH on Alpha/delta, we will 

use a similar approach, except that Alpha/delta will be derived by averaging across each 

second of EEG data for each 10-minute period.  The response criteria will be based on a 

single-subject comparison of the difference between ∆Alpha/delta (Day 3) and ∆Alpha/delta 

(Day 0) using the following formula: (∆Alpha/delta (Day 3) - ∆Alpha/delta (Day 0)) /√n > 1.96, 

where n = the number of measurements (i.e. 4). Therefore, if ∆Alpha/delta (Day 

3) - ∆Alpha/delta (Day 0) > 3.92 we will conclude that there is a significant effect of IV MPH 

on Alpha/delta at an alpha level of 0.05.  

 

11



 

Predefined Criteria for Progressing to STIMPACT Phase 2A  

We will proceed from Phase 1 to Phase 2a if predetermined safety and pharmacodynamic 

biomarker criteria are met.  These criteria yield three potential outcomes for STIMPACT 

Phase 1 (Supplementary Fig. 3): 1) IV MPH is safe and ≥ 10% of the 22 patients show a 

response in alpha/delta or ZVTA-DMN à we will continue to Phase 2a at the maximum 

tolerated dose; 2) IV MPH is not safe, even at the lowest dose à we will repeat Phase 1 

in 22 new patients at a lower dose range; 3) IV MPH is safe, but ≤ 10% show a response 

à we will repeat Phase 1 in 22 patients at a higher dose range and we will leverage the 

flexibility of the CCTP by testing additional graph theory measures as pharmacodynamic 

biomarkers.  For example, if Alpha/delta does not respond to IV MPH, we will test for 

changes in hub strength within cortical nodes that correspond to DMN hubs.  Similarly, if 

ZVTA-DMN does not respond to IV MPH, we will test for a change in ZDMN, which we have 

shown correlates with level of consciousness in the ICU [12].  Hence, the CCTP provides 

alternate approaches at each stage of trial design while maintaining the central focus on 

connectome-based measures of therapeutic responses.  The study design for Phase 2A 

will be finalized upon completion of Phase 1.  

 

Phase 2a Study Design Considerations 

Phase 2a will be a single-center, double-blinded, randomized, cross-over design trial.  

The predictive biomarker (SVTA) and baseline pharmacodynamic biomarker data (alpha-

delta and ZVTA-DMN) will again be acquired on Day 0.  Patients will then be randomized to 

receive alternating daily doses of IV MPH or placebo on Days 1-2 (i.e. MPH/Placebo or 

Placebo/MPH).  On Days 1-2, alpha-delta ratio will be measured before and after IV MPH 
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and placebo.  On Day 3, all patients will receive IV MPH during an rs-fMRI scan for ZVTA-

DMN measurement.  The primary endpoint for Phase 2a will be whichever biomarker 

demonstrates a larger group-level response to IV MPH in Phase 1 (Alpha/delta or ZVTA-

DMN).  The primary hypothesis of STIMPACT Phase 2a is that preserved SVTA predicts a 

pharmacodynamic biomarker response to IV MPH relative to placebo.  Secondary 

endpoints will be the pharmacodynamic biomarker with the lower group-level effect size 

in Phase 1, as well as a clinical biomarker, the change in level of consciousness on 

behavioral assessment with the Coma Recovery Scale-Revised.  The predetermined 

criterion for proceeding from Phase 2a to Phase 2b will be that ≥ 10% of patients show a 

pharmacodynamic biomarker response to IV MPH.  If ≥ 10% of patients are responders 

and preserved SVTA predicts a response, then only patients with preserved SVTA will be 

enrolled in Phase 2b.  We will have thus demonstrated the CCTP’s utility by creating an 

efficiently designed late-phase clinical trial. If ≥ 10% of patients respond to IV MPH but 

SVTA does not predict a response, we will still proceed to Phase 2b because of the 

potential benefit of IV MPH to patients.  However, leveraging the flexibility of the CCTP, 

we will test whether other graph theory properties, alone or in combination, predict MPH 

responses. 

 

Phase 2a Statistical Considerations  

We will test the hypothesis that preserved SVTA independently predicts an MPH response 

using logistic regression and correcting for the following covariates: 1) level of 

consciousness at enrollment; 2) days post-injury at enrollment; 3) age; 4) sex; and 5) level 

of sedation. The sample size for Phase 2a will be based upon whichever 
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pharmacodynamic marker – alpha-delta or ZVTA-DMN – yields the larger effect size in Phase 

1. Given our preliminary data, and assuming an MPH response rate of 10%, we will need 

to enroll 40 patients to test a logistic model with “IV MPH response” as the dependent 

binary variable.  This model will provide 80% power to detect the contribution of SVTA to 

an IV MPH response, with an alpha level of 0.05 and an odds ratio of at least 4, which is 

the standard clinically meaningful cut-off.  

If the logistic regression yields an SVTA coefficient that is statistically significant, we 

will conclude that SVTA predicts an MPH response.  We acknowledge that carry-over 

effects (i.e. MPH effects persisting until placebo administration) are a concern in cross-

over studies.  However, carry-over effects are unlikely because there will be 24 hours 

between drug and placebo, which is more than 16 half-lives of IV MPH [29].  Furthermore, 

if a patient recovers consciousness after IV MPH, that patient will not receive placebo the 

next day, eliminating carry-over effects for these responders.   
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Supplementary Figure 1. Time series
of cardiac (upper panel) and
respiratory data (lower panel) acquired
simultaneously with the acquisition of
resting state BOLD data. The peaks in
cardiac time series serve as surrogate of
R peaks in ECG, while the peaks in
respiratory time series indicate peak
inspiration and the troughs represent end
expiration. The cardiac phase used in
RETROICOR advances linearly from 0 to
2p during each R-R interval and is reset
to 0 for the next cycle. The inspiratory
phase spans 0 to p and the expiratory
phase spans 0 to -p.
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Supplementary Figure 2. Coherence between heart rate and BOLD signal changes in a representative
control subject (upper panel) and a representative patient (lower panel). Time series of heart rate and DBOLD
in the left ventral diencephalon are shown in the left column. The dynamic interaction between heart rate and
DBOLD is demonstrated by the squared wavelet coherence between the time series of heart rate and DBOLD, as
shown in the middle column. The magnitude of coherence ranges between 0 and 1, where a warmer color
represents stronger coherence and cooler color represents weaker coherence. Significant coherence between
heart rate and DBOLD occurs in the area defined by thick contour of the unfaded region. The x-coordinate of the
area provides information on the duration of the oscillating cycle when heart rate interacts with DBOLD, and the y-
coordinate provides the time when this interaction occurs during the resting state fMRI scan. The simplified format
of coherence between heart rate and DBOLD is shown in the right column, with the features of oscillations shown in
terms of frequency only. While increased coherence is found between heart rate and DBOLD at the frequency
range of 0.031-0.125Hz in the healthy subject, the coherence between heart rate and DBOLD in the same
frequency range is diminished in the patient with acute severe TBI. Compared to the healthy subject, the resting
state BOLD signal changes have less influence from heart rate in the patient with acute severe TBI.
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Phase 1 Phase 2a

Repeat 
Phase 1

Repeat 
Phase 1

Phase 2b

IV MPH unsafe 

at 0.5 mg/kg

Decrease dose 
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0.1 – 0.4 mg/kg

Increase dose 
range to 

2.0 – 4.0 mg/kg

IV MPH safe at 2.0 mg/kg 

but no effect on EEG or 

rs-fMRI biomarkers

IV MPH safe at 0.5, 1.0 or 2.0 mg/kg 
AND positive effect on 
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Open-label, 
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single-center 
safety study

Double-blinded,
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Placebo-
Controlled, 

Single-Center 
Study

Double-blinded,
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Placebo-
Controlled, 

Multi-Center 
Study

Supplementary Figure 3. Decision tree for Phases 1, 2a, and 2b of the STIMPACT Trial. Abbreviations: EEG =
electroencephalography; IV MPH = intravenous methylphenidate; rs-fMRI = resting-state functional MRI.
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