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eFigures  
 
eFigure 1. An overview of our approach to identifying prognostic germline variants. 
Whole exome sequenced normal (WXS Normal), whole exome sequenced tumor (WXS 
Tumor), and RNA sequenced tumor (RNA Tumor) samples from 10,582 cancer patients 
from The Cancer Genome Atlas (TCGA) were variant called. The three variant call sets 
were merged to create a single Combined variant call set that was used in the rest of 
the analysis. The variants were filtered to include only common variants that were 
concordant between the three sequencing datasets. We tested variants for an 
association with patient outcomes while controlling for clinical covariates using Cox 
regression models. 
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eFigure 2. An overview of the total number of germline variants called and removed by 
the various filters included in this analysis. 519,319 germline variants were analyzed in 
this study. 
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eFigure 3. Somatic mutations did not compromise the integrity of this study. 
 
A. Most variants called from the tumor samples were germline variants. We plotted the 
percentage of variants called in the whole exome sequenced tumor (WXST) sample that 
were somatic mutations (SM) across all cancers.  
 
B.  Few germline variants (GV) cause the same base change as a somatic mutation 
(SM) across all the cancers after filtering. 
 
C.  Few germline variants (GV) included in this analysis overlap in genomic position with 
a somatic mutation (SM).  
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eFigure 4. RNA editing did not affect the integrity of this analysis. 
 
A. Few germline variants (GV) included in this study overlap with a known RNA editing 
site in genomic position. 
 
B. Most germline variants are called in the whole exome sequenced samples (WXS). A 
relatively small number of germline variants were called solely from the RNA sequenced 
tumor (RNAT) sample. 
 
C. The variant calls from the whole exome sequenced normal (WXSN), whole exome 
sequenced tumor (WXST), RNA sequenced tumor (RNAT), and Combined (the three 
variant call sets merged together) are highly concordant with each other. We calculated 
the allele frequency of each variant in each variant call set and calculated the Spearman 
correlation coefficient between all pairs. 
 
 
 



 8 

 
  



 9 

eFigure 5. Power analysis results depicting the percentage of germline variants with 
greater than 80% power to detect an association between variant status and patient 
outcome in individual cancers assuming varying effect sizes. To estimate our statistical 
power, we randomly sampled 10,000 germline variants in each cancer in each iteration 
and calculated our statistical power to detect an association between each germline 
variant and patient outcome.  
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eFigure 6. Selected Kaplan-Meier curves from the variants identified in Analysis 3 in 
which related cancers were grouped together prior to testing for association with 
survival. 
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eFigure 7. Schematic representations of how rs1558526, rs6174114, and rs35602605 
may perturb well characterize protein domains. 
 
 A. rs1558526 is associated with favorable patient outcome in OV in the secreted 
protease inhibitor A2ML1. Wild type A2ML1 inhibits proteases by forming a covalent 
bond following cleavage of its central bait domain (left). C970 facilitates the formation of 
this covalent bond. rs1558526 causes a C970Y amino acid change that likely disrupts 
A2ML1’s ability to inhibit proteases (right). 
 
B. rs6174114 in CRYBG1/AIM1 is associated with poor patient outcome in PAAD. The 
binding of CRYBG1 to actin requires its 12 bg crystallin motifs and results in 
suppression of pro-invasion phenotypes. rs6174114 causes a L1235P amino acid 
change in the fifth bg crystallin motifs that may disrupt the packing of the beta sheets 
and perturb CRYBG1’s function, likely leading to increased tumor invasiveness and 
poor patient outcome. 
 
C. rs35602605 in EIF2AK4/GCN2 is associated with poor prognosis in THCA. EIF2AK4 
decreases translation of some proteins and increases translation of others (such as 
CDKN1A) under conditions of stress by binding uncharged tRNAs through its histidyl-
tRNA-synthetase domain. rs35602605 results in a G1306S amino acid change in the 
histidyl-tRNA synthetase-like domain. This variant may disrupt the function of EIF2AK4 
resulting in poor patient outcome. 
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eTables 
 
eTable 1. Clinical information about the patients included in this study and the 
covariates that we controlled for in our Cox regression models that were selected using 
Lasso-regularization. 
 
Abbreviation Cancer Sample Size Endpoint Covariates 

ACC Adrenocortical 
carcinoma 91 OS Age, Gender, Race, Stage 

BLCA Bladder Urothelial 
Carcinoma 410 OS Age, Height, Stage 

BRCA Breast invasive 
carcinoma 1079 OS Age, Estrogen Receptor Status 

CESC 

Cervical squamous 
cell carcinoma and 

endocervical 
adenocarcinoma 

294 OS Age, Histological Type, Race, Stage 

CHOL Cholangiocarcinoma 45 OS Albumin Level, Race 

COAD Colon 
adenocarcinoma 441 OS Age, Anatomic Position, Race, Stage 

DLBC 
Lymphoid Neoplasm 
Diffuse Large B-cell 

Lymphoma 
47 PFI None 

ESCA Esophageal 
carcinoma 184 PFI Histological Type, Anatomic Location, Weight 

GBM Glioblastoma 
multiforme 390 OS Age, Chr 19/20 co-gain, Gender, IDH Mutation 

Status 

HNSC 
Head and Neck 
squamous cell 

carcinoma 
523 OS Age, Anatomic Location, Grade, Race, Stage 

KICH Kidney 
Chromophobe 65 PFI Age, Stage 

KIRC Kidney renal clear 
cell carcinoma 530 OS 

Age, Gender, Grade, Hemoglobin Level, 
Platelet Count, Race, Stage, White Blood Cell 

Count 

KIRP 
Kidney renal 
papillary cell 
carcinoma 

286 OS Stage 

LAML Acute Myeloid 
Leukemia 131 OS Age, Cytogenetics Risk, Morphology 

LGG Brain Lower Grade 
Glioma 510 OS 1p/19q co-deletion status, Age, Chr 7 gain/Chr 

10 Loss Status, Grade, IDH Mutation Status 

LIHC Liver hepatocellular 
carcinoma 369 OS Age, Alcohol Consumption History, Fetoprotein 

Value, Grade, Platelet Count, Race, Stage 

LUAD Lung 
adenocarcinoma 506 OS Stage 

LUSC Lung squamous cell 
carcinoma 497 OS Age, Anatomic Location, Race 

MESO Mesothelioma 85 OS Age, Histological Type 

OV Ovarian serous 
cystadenocarcinoma 523 OS Age, Anatomic Location, Grade, Race, Stage 
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PAAD Pancreatic 
adenocarcinoma 184 OS Age, Anatomic Location, Gender, Grade, Race, 

Smoking History, Stage 

PCPG Pheochromocytoma 
and Paraganglioma 177 PFI None 

PRAD Prostate 
adenocarcinoma 498 PFI Anatomic Location, Gleason Grade, Race 

READ Rectum 
adenocarcinoma 163 PFI Age, Gender, Race, Stage 

SARC Sarcoma 260 OS Age, Pathology Margin Status, Postoperative 
Treatment, Residual Tumor 

SKCM Skin Cutaneous 
Melanoma 437 OS Age, Breslow Depth Value, Race, Stage 

STAD Stomach 
adenocarcinoma 416 OS Age, Anatomic Location, Grade, Stage, Race 

TGCT Testicular Germ Cell 
Tumors 134 PFI Anatomic Location, History of Undescended 

Testis, Race, Stage 
THCA Thyroid carcinoma 505 PFI Histological Type, Stage 
THYM Thymoma 122 PFI None 

UCEC 
Uterine Corpus 

Endometrial 
Carcinoma 

544 OS 

Age, Grade, Height, Histological Type, 
Menopausal Status, Race, Stage, Total Pelvic 
Lymph Node Ratio, Total Pelvic Lymph Nodes 

Positive, Weight 

UCS Uterine 
Carcinosarcoma 56 OS 

Hypertension, Residual Tumor, Total Pelvic 
Lymph Node Ratio, Tumor Invasion on Primary 

Pathology 

UVM Uveal Melanoma 80 OS Age, Morphology, Tumor Diameter, Year of 
Diagnosis 
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eTable 3. Justification for the groups presented in Figure 1D.  
 

Group Number Group Group Description 
1 ACC, KICH Clustered by TCGA 
2 ACC, PCPG Adrenal Tumors 
3 BLCA, CESC, HNSC, LUSC Clustered by TCGA 
4 BLCA, KICH, KIRC, KIRP Urinary System 
5 BLCA, KIRC, KIRP Urinary System Without KICH 
6 BRCA, OV, UCEC, UCS Female Reproductive 
7 CESC, HNSC, LUSC Clustered by TCGA 

8 CHOL, COAD, ESCA, LIHC, PAAD, READ, 
STAD Gastro-intestinal 

9 CHOL, LIHC Bile Production and Storage 
10 COAD, ESCA, PAAD, READ, STAD Digestive System 
11 COAD, ESCA, READ, STAD Gastro-intestinal Tract 
12 COAD, READ Colon 
13 COAD, READ, STAD Lower Gastro-intestinal Tract 
14 DLBC, LAML Blood 
15 DLBC, LAML, THYM Immune System 
16 DLBC, PCPG, SARC, THYM, UCS Clustered by TCGA 
17 GBM, LGG Gliomas 
18 GBM, LGG, PCPG Neuro-endocrine and Gliomas 
19 KICH, KIRC, KIRP Kidney 
20 KIRC, KIRP Kidney without KICH 
21 LAML, PRAD, THCA, THYM Clustered by TCGA 
22 LAML, THCA Clustered by TCGA 
23 LUAD, LUSC Pulmonary without MESO 
24 LUAD, LUSC, MESO Pulmonary 
25 OV, UCEC Pelvic Female Reproductive 
26 PAAD, STAD GI Enzyme Production 
27 PRAD, TGCT Male Reproductive 
28 SKCM, UVM Melanoma 
29 UCEC, UCS Uterus 
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eText 
 
eText 1. The final set of germline variants included in this analysis are not substantially 
contaminated by somatic mutations or RNA editing. 
 
 Because the final variant call set was created by merging variant calls from WXS 

Normal, WXS Tumor, and RNA Tumor data, we evaluated our variant calls to ensure 

that they were not significantly contaminated by somatic mutations or RNA editing.  

 The total number of somatic mutations in each patient were obtained from the 

TCGA Research Network.1 <2% of the total number of variants in a patient prior to any 

filtering or quality control were somatic mutations (eFigure 3A). After filtering, <0.002% 

of germline variants in a given cancer included in this analysis caused the same base 

pair change as a somatic mutation (eFigure 3B). In fact, <0.02% of germline variants 

included in this analysis in a given cancer even overlapped in position with a somatic 

mutation (eFigure 3C). Therefore our final variant call set after filtering was not 

significantly contaminated by somatic mutations.  

 We next checked whether our variant call set was significantly affected by RNA 

editing. A set of over 2.5 million known RNA editing sites was identified from the 

rigorously annotated RNA editing database RADAR2 and overlapped with the germline 

variants included in this analysis. <0.25% of germline variants in a given cancer 

included in this analysis overlapped in position with an RNA editing site (eFigure 4A).  

 79.6% of germline variants were called in both the WXS and RNA samples, 

19.6% were called only in the WXS samples, and 0.8% were called only in the RNA 

samples (eFigure 4B). Because a large number of germline variants were called in both 

the WXS and RNA samples, we were able to evaluate the concordance between the 

variant calls between the WXS Normal, WXS Tumor, and RNA Tumor samples. The 
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allele frequency of each variant in each cancer in all four variant call sets (WXS Normal, 

WXS Tumor, RNA Tumor, and the three variant call sets combined) was calculated and 

correlated with each other. The allele frequencies in the four variant call sets were very 

well correlated with each other (eFigure 4C), implying that the variant calls between the 

different samples were highly concordant. Taken together, these results suggest that 

somatic mutations, RNA editing, and pooling of the variant call sets did not lead to 

spurious germline variant calls. 

 Germline variant calling of all of the patients included in TCGA had previously 

been performed by Huang et al.3 We found that 93.0% of the variants called by Huang 

et al. were also found to have the same exact germline variant call in our analysis. For 

1.5% of the variant calls there was disagreement between the two tools about whether 

an individual was heterozygous or homozygous for the alternate allele. 5.53% of the 

variants were called by GenomeVIP (Huang et al.’s tool) but not VarDict (our tool). 

<0.07% of the variants were called in VarDict but not GenomeVIP. 

 The concordance between the two germline variant call sets is quite strong, 

given the differences between the two studies. Huang et al. had performed variant 

calling on the WXS Normal samples aligned to hg19 and had performed variant calling 

using GenomeVIP, which integrates variant calls from Varscan, GATK, and pindel,4-6 

whereas our germline variant calls were generated using VarDict7 from the WXS 

Normal, WXS Tumor, and RNA sequenced tumor samples aligned to hg38. Huang et al. 

implemented a variety of filtering criteria, including requiring an unfiltered allelic depth 

greater than 5 reads. We required a filtered (we excluded reads with a mapping quality 

less than 30 and base quality less than 25) read depth of 3 reads per sample and allele 
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fraction of 5% The level of discordance that we found was expected, given the 

differences that could result from the usage of different reference genomes during 

alignment, filtering criteria, and variant calling tools.7  
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eText 2. The results of our power analysis suggest that we can detect associations 
between germline variants with moderate to high effect sizes and patient outcome. 
 
 We evaluated our ability to detect significant associations between germline 

variants and patient outcome across the thirty-three cancers by calculating statistical 

power. The power to detect a significant association between a variant and patient 

outcome is dependent on multiple factors, including sample size, effect size, correlation 

with other covariates in the survival model, the number of patients with the germline 

variant, and the number of patients without the germline variant. To get a sense of our 

likelihood to detect associations across the thirty-three cancers at various effect sizes, 

we randomly sampled 10,000 germline variants from the pool of testable germline 

variants and calculated power for each germline variant at hazard ratios of 2, 3, 4, 5, 10, 

15, and 20. The results are depicted in eFigure 5.  

 The results suggest that our study design would enable us to detect associations 

beginning around a hazard ratio of 2. With that said, our power study suggests that for 

every germline variant that we are able to associate with patient outcome at lower 

hazard ratios, we will likely fail to detect several others due to having limited statistical 

power for variants with lower effect sizes, even in the cancers with the largest sample 

sizes. Future studies with larger sample sizes will be able to detect these associations 

that our current study will likely miss. Furthermore, it should be noted that even if 

germline variants fail to be associated with patient outcome, our study is not sufficiently 

powered to claim that those variants are not in reality associated with outcome. Finally, 

the results suggest that we are extremely unlike to detect an association with germline 

variants with low to moderate effect sizes in ACC, CHOL, DLBC, KICH, PCPG, TGCT, 

THYM, UCS, and UVM.  
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eText 3. The direction (indicating whether a germline variant is deleterious or protective) 
and magnitude of the hazard ratio is correlated across cancers in which the germline 
variant is prognostic. 
 

When looking at the set of variants associated with patient outcome in three or 

more cancers, we found that the direction of the hazard ratio for a given variant in 

different cancers in which it was prognostic (HR>1 implying that the variant is 

deleterious or HR<1 implying that the variant is protective) was much more concordant 

(p<2.2E-16) than we expected based on random chance. Surprisingly, we even found 

the magnitude of the hazard ratio to be correlated across cancers. We identified the set 

of variants associated with favorable (HR<1) outcome and deleterious (HR>1) outcome 

in three or more cancers and found the hazard ratios estimated for a variant in different 

cancers to be correlated for both the deleterious (HR>1) variants (Spearman rho=0.146, 

p=5.36E-157) and protective (HR<1) variants (Spearman’s rho=0.185, p=2.71E-101). 

Because previous studies have reported a correlation between effect size of variants 

identified in GWAS and allele frequency,8 we considered whether this correlation may 

be confounded by the allele frequency of these variants. After controlling for allele 

frequency, we still find a significant partial correlation after analyzing both the 

deleterious (Spearman rho=0.0667, p=4.024E-34) and protective (Spearman 

rho=0.0584, p=2.274E-11) variants. These findings reinforce the notion that the 

prognostic germline variants’ effects tend to show some consistency across cancers. 
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eText 4. The deleterious allele of prognostic germline variants are more likely to be 
associated with somatic mutations in known cancer driver genes than of non-prognostic 
germline variants. 
 

A previous study had identified germline variants that were associated with a 

significant increased incidence of somatic mutations in cancer related genes.9 We 

therefore hypothesized that the prognostic variants were associated with an increased 

incidence of somatic mutations in driver genes in the cancer in which that variant was 

prognostic. To test this hypothesis, we created 353 germline variant-cancer pairs and 

determined the number of prognostic variants for which the deleterious allele was 

associated with an increased incidence of somatic mutations relative to the protective 

allele. We repeated this analysis for all of the germline variants included in this analysis. 

We found that 47 of the 353 (13.3%) germline variant-cancer pairs were associated with 

an increased incidence of mutations in cancer driver genes which is more than 

expected by random chance (OR=1.89, p=0.0001).  
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eText 5. A detailed discussion of the twelve germline variants that cause significant 
amino acid changes.  
 

To demonstrate that the prognostic germline variants identify genes that could be 

directly or indirectly linked to cancer progression, below we turn to the twelve germline 

variants in Figure 5E that caused substantial amino acid changes. Of these MAP2K3 

has been discussed in the main text. 

A2ML1 is a secreted protease inhibitor that inhibits all classes of proteases. 

When proteases cleave the central bait domain of A2ML1, conformational changes 

cause an internal thiol ester, formed by C970 and Gln973, to become highly reactive. 

This thiol ester bond binds the protease and facilitates the formation of covalent bonds 

between A2ML1 and the protease, resulting in protease entrapment and inhibition.10 In 

our analysis, the germline variant rs1558526 was associated with favorable patient 

outcome in ovarian cancer patients and resulted in a C970Y change in A2ML1. 

Because the very cysteine residue that forms the internal thiol ester is lost, this amino 

acid change likely disrupts A2ML1’s protease inhibition function (eFigure 7A). This 

result suggests that certain extracellular proteases which A2ML1 may normally inhibit 

may have anti-tumor effects, for example by degrading angiogenic factors or anti-

immune factors.  

CRYBG1/AIM1 (absent in melanoma) is a protein that localizes to the 

cytoskeleton. Loss of CRYBG1 in prostate cancer cells leads to increased G-actin 

(relative to F-actin), cell migration, invasion and soft agar colony formation.  Binding of 

AIM1 to actin requires the six C terminal domains made of 12 βγ crystallin motifs.11 We 

found rs6174114 in CRYBG1 to be associated with poor patient outcome in pancreatic 

cancer. This variant changes L1235 to P in the fifth domain of CRYBG1. Substitution of 
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proline at this position could disrupt the packing of the beta sheets that make a β or γ 

motif (eFigure 7B), resulting in loss of CRYBG1 function and therefore increase cell 

migration, invasion, and soft agar colony formation. This would explain the poor patient 

outcome associated with this germline variant. Somatic mutation or epigenetic 

suppression of CRYBG1 has been seen in melanomas, lymphomas, and prostate 

carcinoma. Decreased expression of the protein associated with metastasis.11 

EIF2AK4/GCN2 is a protein kinase that is activated under stress by binding to 

uncharged tRNAs through its histidyl-tRNA-synthetase domain. This kinase is important 

for decreasing protein translation and for activating specific translation of genes like 

ATF4 and p21/CDKN1A under conditions of stress often seen inside tumors like amino 

acid starvation and glucose starvation. We found the germline variant rs35602605 in 

EIF2AK4 to be associated with poor prognosis. This variant causes a G1306S amino 

acid change in the histidyl-tRNA synthetase-like domain (eFigure 7C). This variant may 

disrupt the ability of the histidyl-tRNA synthetase-like domain to bind uncharged tRNAs 

and thereby protect the cancer cells from translation of stress-induced genes like 

CDKN1A that restrain tumor proliferation. If true, this would explain the association of 

this germline variant with poor patient outcome.  

The other gene-products identified by prognostic variants in Figure 5E also 

warrant a detailed examination. Two of them could be important for immune response to 

a tumor. FCRL6 binds to MHC class II proteins and acts as an immune checkpoint 

protein that is often upregulated in Tumor infiltrating lymphocytes.12 It is particularly 

interesting that FCRL6 expression of T lymphocytes is decreased five-fold in acute and 

chronic myeloid leukemias13 because the rs61823162 variant (which truncates the 



 24 

protein) is associated with outcome in LAML. EPHA10 is a non-functional tyrosine 

kinase receptor for ephrins. The G749E mutation is located in the tyrosine kinase 

domain, which upregulates PD-L1 protein expression.14 Three genes are involved in 

intracellular vesicle transport, membrane fusion and cell migration: BORCS5 recruits the 

ARL8B GTPase to lysosomes for lysosomal movement and function, KDELR3 is 

involved in retaining proteins in the endoplasmic reticulum, and MYOF facilitates vesicle 

fusion. Two are involved in GPCR pathways: OR10X1 is an olfactory receptor and 

SAG/arrestin1 binds to GPCRs (such as rhodopsin) to terminate signaling. Many 

olfactory receptors are ectopically expressed in several cancer15 and their activation 

decreases cancer cell proliferation and migration and increases apoptosis.16 The I-76 of 

SAG that is altered by the variation is located in the highly conserved finger loop of motif 

2, (E/D)x(I/L)xxxGL, which is extended and buried in the rhodopsin (GPCR)-SAG 

interface.17 Finally ECD/SGT1 associates with many cellular proteins relevant for 

cancer, MDM2, Rb, HSP90, SKP1, and RUVBL1, the last in particular using the C-

terminal region of ECD that is mutated in the prognostic variant.  
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