
S2 Text. Model descriptions

Model I

Transmission model

The Institute for Disease Modeling (IDM) model (Model I) is a deterministic
compartmental model that captures the most prominent features of human African
trypanosomiasis (HAT). A diagram of the model is given in Figure 1. It is a variant
of the model used in a previous paper ( [1]). This simple model structure allows for
most of the parameters to be calibrated given the quantity of data available.

The key difference with the previous model is the inclusion of a refractory
population in the tsetse to capture the teneral phenomenon of trypanosome infection
of the vector. The two host stages are allowed to be dynamically different, where
we allow the biting rate of tsetse flies on stage 1 and stage 2 humans to vary.

This captures potential differences in population level behaviour between the
two stages. Hence, the division need not directly coincide with the transit of the
blood brain barrier in the host, but rather with the point where the behavior of the
host becomes sufficiently different to alter the interactions with tsetse.

With this in mind, we included the stage transition rate among the parameters
that we allowed to vary for calibration, although the prior for this parameter was
tightly controlled.

The other parameters which we allowed to vary for the calibration were stage
dependent disease induced mortality, transmission parameters with two stage de-
pendent host to vector transmission rates, and one vector to host transmission rate,
stage dependent active and passive screening rates, rate of return to the susceptible
class after treatment, stage dependent initial prevalence, initial recovered proportion,
initial vector prevalence, and initial proportion of vectors that were refractory for a
total of 16 calibrated parameters. The choice to fit the initial conditions was based
on the lack of data for previous interventions.

The remaining values needed for the model were birth and death rates of non-
infected individuals, death rate of vectors, and the refractory rate for the vectors.
These values, with the exception of the birth rate, were chosen from literature. The
birth rate was set so as to produce a 3% annual growth of the population.
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Figure 1: Schematic for Model I. The blue boxes represent the host and the orange boxes represent

the vectors. The vectors have a refractory compartment, Rv , to account for the teneral phenomenon.

Fitting methodology

A Bayesian approach was used to calibrate the model to each subset of data. The
choice was made to use a Bayesian approach since it was capable of simply account-
ing for the uncertainty in the observation process (active and passive screening).
Hence, we need only to reconstruct the observation process in the model and com-
pare it against the distribution associated with the data, rather than directly measure
the effect of the model dynamics on parameter uncertainty (which would require an
approximate Bayesian computation (ABC) approach, since an analytical approach
would require closed form solutions of the system of differential equations). For
this model, this method represented the most direct approach to the problem.

We now give a description of how we modelled the observation process and
derived the associated likelihoods for the Bayesian computations. Active screening
was considered on a daily basis, where the number of people screened each day was
the daily average of people screened for that year (that is, the total number of people
screened, divided by 365). The number of cases found per day was considered to
be a realization of a binomial random variable with probability determined by the
prevalence in the model dynamics for that given day. The daily cases were summed
to produce the yearly totals. However since, the sum of binomial random variables
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has an intractable probability mass function (pmf), we approximated the daily
number of cases with a Poisson random variable whose parameter is the product of
the number of people screened daily and the daily prevalence (this is justified since
the prevalence is small); and since the sum of Poisson random variables is Poisson,
we used a Poisson pmf for the likelihood for the yearly cases. For simplicity, the
number of cases each year were considered to be independent, so that the total
likelihood for the Bayesian approach was the product of the various Poisson pmfs
for the years.

Naive Markov Chain Monte Carlo (MCMC) sampling of the prior parameter
space had prohibitively large rejection rates, and so a modified sampling scheme
was used that approximates the distributions of the likely solutions. Several local
maxima of the likelihood were found through traditional optimisation, begun at
randomly selected points within the prior space. We then sample around these local
maximum likelihood estimators (MLEs) with multivariate normal distributions. The
new samples were accepted with probability equal to the ratio of the likelihood
value with the MLE. The variance of these normal distributions were chosen so
that the acceptance rate was approximately 20%, so that the new samples were
sufficiently different for the local MLE we were sampling around. This targeted
sampling method improved our efficiency in sampling from feasible regions of the
parameter space.

Due to the first optimisation step in our sampling approach, we were able to
begin with relatively large prior distributions for the calibrated parameters. These,
and the values for the fixed parameters, are listed in Table 1 (note that since we
are calibrating parameters that are coefficients of dimensionless variables in the
ordinary differential equations, they all have units 1/days).
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Parameter Units Prior
Stage Transition Rate 1/days Unif(.0015, .005)
Stage 1 Death Rate 1/days Unif(.000054795, .0001)
Stage 2 Death Rate 1/days Unif(.0015, .005)

Vector to Host Transmission 1/days Unif(0, 10)
Stage 1 Passive Screening Rate 1/days Unif(.5, 5)
Stage 1 Active Screening Rate 1/days Unif(1, 5)
Stage 2 Passive Screening Rate 1/days Unif(0, 10)

Stage 1 Host to Vector Transmission 1/days Unif(0, 1)
Stage 2 Host to Vector Transmission 1/days Unif(0, 1)

Stage 2 Active Screening Rate 1/days Unif(0, 10)
Return to Susceptible Rate 1/days Unif(0, .03)
Initial Stage 1 Prevalence - Unif(0, .01)
Initial Stage 2 Prevalence - Unif(0, .01)

Initial Recovered Proportion - Unif(0, .1)
Initial Infected Vector Proportion - Unif(0, .1)

Initial Refractory Vector Proportion - Unif(.5, .9)
Susceptible Birthrate 1/days ln(1.03/365)

Vector Death Rate 1/days .03 [2]
Vector Refractory Rate 1/days .33 [2]

Table 1: Parameterisation for Model I.

Priors come either directly from the previous study, or are up to 50% expansions
(within reasonable values). Given the targeted sampling scheme implemented, and
the very narrow peaks in the likelihood, posteriors were not particularly sensitive
to the choice of bounds on these values. Posteriors are plotted as histograms in
Figures 2–4.
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Figure 2: Posteriors for Fit A for Model I.

Figure 3: Posteriors for Fit B for Model I.
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Figure 4: Posteriors for Fit C for Model I.

Model S

Transmission model

The Swiss TPH model (Model S) is a variant of the HAT transmission model
published in [3], consisting of a system of coupled ordinary differential equations.
The deterministic model consists of compartments for tsetse, animal and human
populations. These three different host types are modelled for two different settings
corresponding to a low transmission area (e.g. the village, L) and a high transmission
area (such as river banks or plantations, H) that enable accounting for heterogeneity
in exposure to tsetse bites. As previously, the population size for tsetse, animal
or humans in each setting i (i = {L,H}) is assumed to be stable by allowing
the associated birth terms to compensate deaths in all the compartments. Tsetse
and animal populations always stay within their setting (for example, tsetse in low
transmission settings always remain in the low transmission setting and animals in
high transmission settings always remain in the high transmission setting). Similarly,
humans in low transmission settings always remain in low transmission setting.
However, humans in the high transmission setting move back and forth between the
high and low transmission settings spending a fixed amount of time in each one (to
model, for example, the movement of high risk individuals between villages and
plantations) — as shown in Figure 5.

Five compartments describe humans in any of the two settings: susceptible
(Shi); exposed or incubating (Ehi); infected with the first stage of the disease (Ih1i);
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infected with the second stage of the disease, where trypanosomes have reached the
cerebro-spinal fluid (Ih2i); and treated (Thi). The total human population in setting
i is Nhi = Shi + Ehi + Ih1i + Ih2i + Thi.

Tsetse populations are divided into susceptible (Svi); teneral (Uvi); exposed
(Evi); and infected (Ivi), so that the vector population isNvi = Svi+Uvi+Evi+Ivi.

In this version of the HAT model, we assume animals do not contribute to
transmission, thus animal populations are modelled as constant parameters, Nai,
and only form a sink for tsetse bite.

Assumptions for HAT transmission that are new to this variant of the model
are the following: (a) both stages of the disease are exposed to tsetse fly bites (in
the previous version, only stage 1 was exposed to tsetse flies); (b) a compartment
indicated with Ui was added to the vector dynamics to account for the teneral
effect — a reduction of infectivity with time — such that on average tsetse are
only infectious for the first five days after emergence. These changes were made to
provide a more realistic representation of the transmission dynamics.

Test and treat interventions encompass both active screening and passive surveil-
lance. Passive detection is represented by a continuous stage-specific detection rate
and removes infected people from both low- and high-risk settings whilst active
screening only recruits people in the low risk setting.

Active screening was modelled as as a pulsed activity taking place in the first
month of each year as this is a more realistic representation of actual campaigns
than the continuous rate of active screening used previously in this model [3]. We
followed [4] to relate a proportion, d, of humans effectively screened in a given
a year and the daily removal rate rcontinuous

as as d = 1 − e−365rcontinous
as . Thus, for

the pulsed active screening, we get: rpulsed
as = 12rcontinous

as = −(12/365)ln(1− d).
Screening levels were informed from data; estimates for the population of Bandundu
were taken from [5] for the period corresponding to each calibration, and a 3%
annual growth was assumed for projections.

We included a new parameter, ε, to represent the unknown proportion of the
population at risk of infection in Bandundu province, such that d(t) = Xs(t)

εNB(t , where
Xs(t) indicates number of people screened in year t, andNB(t) indicates Bandundu
province population in year t. With no additional data enabling estimating ε, this
parameter was set as a constant value in all of the three different fits performed.

A schematic of the model is shown in Figure 5, while model parameters are
described in Table 2 . Fixed parameters values were taken from Model S posteriors
(median) in [1] unless indicated otherwise.
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Figure 5: Schematic of Model S. Left: model population structure. Human populations are

composed by a stationary population (NhL) that remains in low exposure habitats (e.g., a village), and

a smaller population (NhH ) which commute and spend a proportion ξ of their time in a potentially high

exposure setting (e.g., a plantation). Each habitat also contains tsetse (NvL and NvH ) and non-human

vertebrate animal populations (NaL and NaH ). Right: schematic of infection dynamics, subscripts

i = {L,H} were removed for easy reading. Compartmental diagram highlights the transmissions

between states of infection of the tsetse and human populations, with solid lines indicating transition

between compartments, and dashed lines representing transmission rates. Animals cannot transmit

infection thus acting as a sink for tsetse bite. Note that in the low-risk transmission setting, both

human populations are exposed to tsetse bites. Figure adapted from [3].
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Notation Description Unit Value
α Rate at which tsetse become non-teneral (i.e. cannot

get infectious)
Year−1 73

A/H1 Density of animals relative to humans in area L - 0.7
A/H2 Density of animals relative to humans in area H - 0.9
b Proportion of infective bites leading to infection in

humans and animals
- 0.8

ch Proportion of bites on an infective human that lead to
a mature infection in flies

- fitted

cai Proportion of bites on an infective animal of type i
that lead to a mature infection in flies

- 0

δ Rate at which treated humans return to the susceptible
class

Year−1 2.19

δa Rate of loss of immunity in animal hosts Year−1 1.095
ε Proportion of population at risk - 0.7
η Rate at which hosts move from the incubating stage Year−1 31.025
f Inverse of duration of feeding cycle; or biting rate Year−1 121.545
γ Rate of progression to stage 2 in humans Year−1 0.365
γaL Rate of progression to the immune class in animal

hosts of type L
Year−1 0.73

γaH Rate of progression to the immune class in animal
hosts of type H

Year−1 0.6935

µ Death rate of humans due to natural causes Year−1 0.02
µai Death rate of animal host of type i Year−1 0.511
µγ Disease-induced death rate or rate of leaving the re-

covered state for humans
Year−1 fitted

µt Death rate of humans due to treatment Year−1 0
µv Death rate of tsetse Year−1 10.95
ν Inverse of the extrinsic incubation period Year−1 13.505
mHL Ratio of humans in the high exposure to low exposure

environment
- fitted

r1 Removal rate of infected humans in stage 1 due to
treatment (passive detection)

Year−1 4.6144

r2 Removal rate of infected humans in stage 2 due to
treatment (passive detection)

Year−1 fitted

σ Biting preference for humans - 0.4
σai Biting preference for animal in the setting i - 0.3
vhi Number of vectors per human in area i - fitted
ξ Proportion of time spent i the high risk region by com-

muters
- 0.62

Table 2: Parameterisation for Model S. Here i = {L,H}. The human population
sizes, Nhi are calculated from mHL. The animal populations, Nai, are products of
the animal densities relative to humans and the human populations; and the tsetse
populations, Nvi, are products of the tsetse densities relative to humans and the
human populations.
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Fitting procedure

The model was run to reach equilibrium prevalence of infection prior to fitting
assuming on-going passive screening only. The model was calibrated to the three
different data configurations described in the main text via approximate Bayesian
computation (ABC) fitting six parameters (human infectivity, ch; passive detection
rate of stage 2, r2 (through a constant of proportionality, c2); stage 2 human mortality
rate, µγ ; proportion of humans in high- to low-risk setting, mHL; and proportion
of vector to human in both settings, vhL and vhH ). In all cases uniform prior
distributions were used (Table 3).

For the fits to staged data, an improvement in passive detection was included in
the detection rate of stage 2, r2, by multiplying the fitted constant of proportionality,
c2, by the proportion of people screened through passive surveillance as informed
by data which showed an increasing trend.

Annual reported cases distinguished by detection strategy (active or passive) was
used as summary statistics in the ABC procedure. Reported cases were additionally
divided by stage in the two fits using staged data. Parameter sets were rejected if
simulations for those sets did not satisfy the error tolerance,

max
d,s,y

∣∣∣∣∣Dd,s
y −Rd,sy
Dd,s
y

∣∣∣∣∣ < 0.4,

where Dd,s
y denotes the number of reported cases from the data and Rd,sy denotes

the number of reported cases from the model separated by detection method, d
(active or passive) for all three data sets; disease stage, s (1 or 2) for the staged
and subset staged data sets; and year of detection, y (2000–2012 for the staged and
unstaged data sets and 2000–2006 for the subset staged data set). The trend in the
number of stage 1 reported cases by passive detection for Bandundu province (see
“S1 Text. Remarks”) is decreasing. Using error tolerances > 40% systematically
led to accepting a high proportion of simulations with an increasing trend for the
number of stage 1 cases, which is the opposite of the observed trend in this data set.
Therefore, the choice of an error tolerance of 40% enabled an optimised search in
the parameter space by rejecting most of these cases.

Summary statistics for the posterior distribution of parameters estimated for the
three different fits is shown in Table 4 and the posterior distributions are shown in
Figures 6–8.
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Parameter Description Unit Prior
ch Proportion of bites on an infective human that

lead to a mature infection in flies
- X ∼ Unif[0.01, 0.04]

c2 Constant of proportionality relating propor-
tion of population screened to detection rate

Year−1 X ∼ Unif[0, 80]

µγ Disease-induced death rate or rate of
leaving the recovered state for humans

Year−1 X ∼ Unif[0.42, 0.73]

mHL Ratio of humans in the high exposure
to low exposure environment

- X ∼ Unif[0.001, 0.3]

vhL Number of vectors per human in area L - X ∼ Unif[2, 4]
vhH Number of vectors per human in area H - X ∼ Unif[2, 4.5]

Table 3: Priors for fitted parameters for Model S.
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Parameter Fit A Fit B Fit C
Median 95% CI Median 95% CI Median 95% CI

ch (×10−3) 3.3026 [2.5784,3.9565] 3.2134 [2.554, 3.9612] 3.3187 [2.4777, 3.9602]
c2
[
Year−1] 26.2957 [13.4553, 52.165] 22.3726 [15.2063, 33.0127] 42.0879 [28.2592, 55.4726]

µγ
[
Year−1] 0.5818 [0.4452, 0.7216] 0.6189 [0.4852, 0.7261] 0.5784 [0.4574, 0.7114]
mHL 0.1803010 [0.06387 0.2883] 0.2468 [0.1508, 0.2951] 0.0806 [0.0125, 0.2005]
vhL 2.8781 [2.1104, 3.8834] 3.1426 [2.4479, 3.9298] 2.8617 [2.2768, 3.8557]
vhH 3.7902 [2.8325, 4.4619] 3.6195 [2.8221, 4.4467] 3.8114 [2.7344 4.4593]

Table 4: Summary statistics of the posterior distributions for parameters for Model S.
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Figure 6: Posterior parameter distributions for Fit A (unstaged data) for Model S.
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Figure 7: Posterior parameter distributions for Fit B (staged data) for Model S.
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Figure 8: Posterior parameter distributions for Fit C (7 years staged data) for Model
S.
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Model W

Transmission model

The Warwick HAT model (Model W) and its variations have been described in
previous publications [1, 6–9]. The version used in the present study is a compart-
mental ODE model which describes the disease dynamics of human and tsetse
populations (Figure 9). Following previous model selection studies [6, 9], humans
are considered to either be at low- or high-risk of exposure to tsetse, with a higher
biting pressure on high-risk humans. Tsetse are also assumed to feed on other
non-reservoir animals, which cannot transmit to tsetse. In the present study, the role
of animal reservoirs is not considered.

Upon infection from tsetse, humans pass through a brief incubation period (EH ),
and then enter stage 1 disease (I1H ). During this stage, there is only a low passive
detection rate, d1, as individuals with non-specific symptoms may not be picked
up through standard passive detection. After a period of 1/ϕH days on average,
undetected people develop stage 2 disease (I2H ). The passive detection rate is given
by uγH for stage 2 infection, which has more specific symptoms; this rate combines
the exit rate for stage 2 (treatment or death) and the reporting probability (u). Stage
1 and 2 infected people are assumed to be equality infectious to tsetse. Typical
active screening (denoted by νH in Figure 9) is assumed to only recruit people from
the low-risk group and has a full diagnostic algorithm sensitivity of 91%. Screening
is assumed to occur annually. After active or passive diagnosis, patients are treated
in hospital (RH ) and recover at home become returning to a susceptible status after
a period 1/ωH .

Tsetse population dynamics are modelled explicitly including a pupal stage
(PV ), teneral/unfed adults which are susceptible to infection (SV ), non-teneral
and uninfected adults which have significantly reduced (95%) susceptibility to
infection (GV ), tsetse incubating infection (EV ) and tsetse with mature salivary
gland infections (IV ).

To simulate the impact of intensified interventions, some additional modifica-
tions were made:

• To model the impact of tsetse control it was assumed that tiny targets were
deployed at six-monthly intervals. The probability of a tsetse hitting a target
and dying during the blood-feeding phase of the cycle is given by:

fT (t) = fmax
(

1− 1
1 + exp(−0.068(mod(t, 182.5)− 127.75))

)
(1)

with fmax representing the maximum target efficacy just after initial deploy-
ment following Rock et al [8].
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• To simulate the impact of enhanced passive detection the reporting probability,
u, may be scaled to so that u 7→ (1 + u)/2 (i.e., the probability of underre-
porting is halved). For the same year, the two rate parameters corresponding
to passive detection from stage 1 and exiting stage 2, d1 and γH respectively,
were doubled. This strategy is the same used previously [1], and it is noted
(once again) that the most appropriate parameter increase in the model to
capture the real-world impact enhanced passive detection remains unclear.

Figure 9: Schematic of Model W. Boxes show compartments representing different types of hosts

(blue and purple) and vectors (pink), and disease status and progression for each host/vector type

(solid lines). Gray lines show possible routes of transmission between tsetse and humans. This figure

is reproduced from [1].

Fitting procedure

The model was fitted three times, to the unstaged (Fit A), staged (Fit B) and subset
staged (Fit C) data described in the main text. Eight parameters, R0, r, k1, d1, u,
γH , dispact, and disppass, were fitted for all three data sets. Descriptions and values
of all fixed parameters are given in Table 5 and descriptions and prior distributions
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for all fitted parameters are given in Table 6. In the fit to 13 years staged data (Fit
B) an additional parameter, damp was fitted. This additional parameter, which did
not feature in previously published iterations of Model W, was used to fit to the
increase in the percentage of stage 1 reporting in passive detection by increasing the
stage 1 passive detection rate, d, such that passive stage 1 reporting is described by:

d(Y ) = d1

1 +
damp

1 + exp
(
−dsteep(Y − dchange)

)
 . (2)

This was not used for the other fits as there was no observable change in the data —
either there was no staging information (Fit A), or there were too few years (Fit C)
to detect an increase in the stage 1 to 2 passive case ratio (the change occurs post
2006).
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Table 5: Parameterisation (fixed parameters) for Model W

Notation Description Value
NH Total human population size 9.0744× 106

BH Total human birth rate = µHNH

µH Natural human mortality rate 5.4795×10−5 days−1 [10]
σH Human incubation rate 0.0833 days−1 [11]
ϕH Stage 1 to 2 progression rate 0.0019 days−1 [12, 13]
ωH Recovery rate/waning-immunity rate 0.006 days−1 [14]

Sens Active screening diagnostic sensitivity 0.91 [15]
Spec Active screening diagnostic specificity 0.999 [15]
BV Tsetse birth rate 0.0505∗ [8]
ξV Pupal death rate 0.037 days −1

K Pupal carrying capacity = 111.09N †H [8]
P(pupating) Probability of pupating 0.75

µV Tsetse mortality rate 0.03 days−1 [11]
σV Tsetse incubation rate 0.034 days−1 [16, 17]
α Tsetse bite rate 0.333 days−1 [18]
pV Probability of tsetse infection per single

infective bite
0.065 [11]

ε Reduced non-teneral susceptibility factor 0.05 [6]
fH Proportion of blood-meals on humans 0.09 [19]
fmax Probability of both hitting a tiny target and

subsequently dying at time t (60% reduc-
tion after 1 year)

0.0302

dsteep Steepness of change in S1 passive detection
function

1 Assumed

dchange Switching point in S1 passive detection
function

2008 Assumed

∗ Value is chosen to maintain constant population size without interventions (see [8]).

† Value is chosen to reflect the observed bounce back rate (see [8]).
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Table 6: Parameterisation (fitted parameters) for Model W.

Notation Description Unit Prior
R0 Basic reproduction number

(Next Generation Matrix approach)
- X ∼ Unif[0,∞)

d1 Treatment rate from stage 1 Days−1 X ∼ Unif[0, inf)
γH Treatment rate from stage 2 Days−1 X ∼ N

(
0.0045, 6.4× 10−7)

u Proportion of passive cases reported - X ∼ B(5, 5)
k1 Proportion of low-risk people - X ∼ Unif[0, 1]
k4 Proportion of high-risk people - k4 = 1− k1
meff Effective tsetse density - Fitted as part of R0

as R2
0 ∝ meff

pH Probability of human infection
per single infective bite

- Fitted as part of R0,
(N.B. meff = NV pH/NH )

NV Tsetse population size - Fitted as part of R0,
(N.B. meff = NV pH/NH )

r Relative bites taken on high-risk hu-
mans

- X ∼ Unif[1, 100]

dispact Overdispersion for active screening - X ∼ Unif[1,∞)
disppass Overdispersion for passive screening - X ∼ Unif[1,∞)
damp Amplitude of change in S1 passive de-

tection function
- X ∼ Unif[0, 3]
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The adaptive Metropolis-Hastings MCMC used in this study took the log-
likelihood function to be:

LL(θ|x) = log(P (x|θ))

∝
2007 or 2012∑
i=2000

(
log

[
BetaBin

(
AD1(i) +AD2(i); z(i), AM1(i) +AM2(i)

NH
, dispact

)]

+ log
[
Bin

(
AD1(i);AD1(i) +AD2(i), AM1(i)

AM1(i) +AM2(i)

)]
+ log

[
BetaBin

(
PD1(i) + PD2(i);NH ,

PM1(i) + PM2(i)
NH

,disppass

)]

+ log
[
Bin

(
PD1(i);PD1(i) + PD2(i), PM1(i)

PM1(i) + PM2(i)

)])

In the “unstaged” case, j denotes all reported cases of that type, whereas
in the two “staged” fits, the j ∈ {1, 2} denotes for stage 1 and stage 2 cases
respectively. The model takes parameterisation θ, x is the data, PDj(i) and ADj(i)
are the number of passive/active cases (of stage j) in year i of the data, PMj(i)
and AMj(i) are the number of passive/active cases (of stage j) in year i of the
model, and z(i) is the number of people screened in year i. Beta-Bin(m;n, p, a)
gives the probability of obtaining m successes out of n trials with probability p and
overdispersion parameter a. The overdispersion accounts for larger variance than
under the binomial; this feature of the model fitting was new compared to previous
fits for health zones which were performed using binomial pdfs. The tight credible
intervals of the binomial became particularly pronounced at the provincial scale
and so the Beta-Binomial was deemed more appropriate for capturing sampling
uncertainty. N.B. The pdf of this Beta-Binomial distribution is given by:

BetaBin(m;n, p, ρ) gives the probability of obtaining m successes out of n
trials with probability p and overdispersion parameter ρ (which is given by the value
dispact or disppass for active and passive screening respectively). The overdisper-
sion accounts for larger variance than under the binomial. The pdf of this distribution
is given by:

BetaBin(m;n, p, ρ) = Γ(n+ 1)Γ(m+ a)Γ(n−m+ b)Γ(a+ b)
Γ(n−m+ 1)Γ(n+ a+ b)Γ(a)Γ(b)

where a = p(1/ρ− 1) and b = a(1− p)/p.
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Results

For each of the three fits, a burn-in of 10,000 steps was used, followed by 100,000
MCMC steps to generate posterior distributions. 1000 samples were taken from
each, and 10 realisations were sampled from each parameter set to yield 10,000
samples to use for projections of different strategies.

Table 7 gives the summary information for fitted parameters, whilst Figures 10,
11 and 12 show the posterior parameter distributions for each of the three fits.

Summary

The key differences between the present study and previous versions of Model W
and its fitting methodologies are:

• The use of an increasing stage 1 passive detection rate, d(Y ), in Fit B. Previ-
ously Model W had a fixed stage 1 detection rate over time [9] (and indeed it
remained fixed here in Fits A and C, as the data were insufficiently informa-
tive to justify a varying parameter).

• Switching from a binomial log-likelihood function to beta-binomial to in-
crease variation due to sampling bias for this provincial scale analysis.

• Slight change in the log-likelihood formulation to account for staged and
unstaged data.
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Figure 10: Posterior parameter distributions for Fit A (13 years unstaged data) for
Model W.
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Figure 11: Posterior parameter distributions for Fit B (13 years staged data) for
Model W.
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Figure 12: Posterior parameter distributions for Fit C (7 years staged data) for
Model W.
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Fit A Fit B Fit C
Mean 95% CI Mean 95% CI Mean 95% CI

R0 1.0024 [1.0018, 1.0031] 1.0015 [1.0012, 1.0018] 1.0025 [1.0017, 1.0038]
d1 [Days−1] 8.82×10−5 [2.65×10−6, 2.70× 10−4] 2.42×10−4 [1.83×10−4, 3.13× 10−4] 1.28×10−4 [7.22×10−5, 2.04× 10−4]
γH [Days−1] 0.0043 [0.0026, 0.0060] 0.0015 [0.0012, 0.0018] 0.0022 [0.0017, 0.0027]

u 0.1876 [0.0912, 0.2917] 0.3911 [0.2934, 0.5097] 0.2012 [0.1130, 0.3241]
k1 0.7871 [0.6522, 0.9042] 0.4927 [0.3826, 0.6877] 0.6469 [0.2994, 0.9788]
r 1.6770 [1.4001, 2.0166] 1.0319 [1.0008, 1.1305] 1.3488 [1.0147, 2.0401]

dispact 0.0003 [0.0001, 0.0007] 0.0005 [0.0002, 0.0010] 0.0006 [0.0001, 0.0018]
disppass 1.38×10−6 [4.26×10−7, 3.99× 10−6] 1.35×10−6 [4.38×10−7, 3.79× 10−6] 4.56×10−6 [6.31×10−7, 2.38× 10−5]
damp 0.0043 [0.0026, 0.0060] 0.0015 [0.0012, 0.0018] 0.0022 [0.0017, 0.0027]

Table 7: Posterior parameter means and 95% credible intervals for Model W.
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Model Y

Transmission model

The Yale model (Model Y) is a deterministic vector-host model for disease trans-
mission between tsetse and human populations. The model implicitly accounts
for non-reservoir animals through a biting preference parameter, which ensures
that all tsetse bites are not directed to humans. This model was used in a previous
publication ( [8]).

We assumed that tsetse flies are susceptible to trypanosome infection only
during their first blood meal and only within 24 hours after emergence from pupa to
the adult stage. Susceptible adult tsetse flies become infected after feeding on an
infectious human and enter the exposed state where the infection incubates. After
incubation, tsetse flies become infectious for the rest of their life.

Humans may become exposed to infection after being bitten by an infectious
tsetse. After the incubation period, a proportion of infected human hosts become
symptomatic and enter stage 1 of the disease (Figure 13). Infected symptomatic
human hosts would progress from stage 1 to stage 2 of infection, characterised by
the severity of disease symptoms. The remaining proportion of infected human
hosts do not become symptomatic and move to an asymptomatic compartment. We
assume that these asymptomatic carriers never become symptomatic and recover
after an average duration of infection (that was fitted to the data).

Contrary to the previous use of this model where we assumed differential
infectivity between asymptomatic carriers and stages 1 and 2, here we assume that
stage 1 and 2 and asymptomatic infections are equally infectious. Stage 1 patients
either seek treatment and recover or progress to stage 2 due to being untreated or
due to treatment failure. Stage 2 patients either seek treatment and recover or die
due to being untreated or due to treatment failure. Successfully treated HAT patients
are temporarily immune to reinfection before returning to full susceptibility.

Passive screening is implemented as a constant stage-specific rate of case
reporting and treatment. Active screening and treatment are implemented as an
impulse control in the model, assumed to occur during the beginning of the year and
all patients testing positive were treated. Active screening coverage was informed
by the data. Initial conditions were taken as endemic equilibria in the absence of
active screening or vector control as it was assumed that passive screening was the
only intervention available before 2000.
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Figure 13: Schematic of Model Y. The figure is reproduced from [8], and shows disease transmission

and progression for human and tsetse flies populations. Here the human population is divided intoHS ,

susceptible, HE , exposed, HA, asymptomatic carriers, HI1, stage 1 infection, HI2, stage 2 infection,

and HR, recovered. Tsetse population is divided into VS , susceptible, VE , exposed, VI , infected, and

VR, recovered. Solid arrows represent the flow of individuals in and out of the different compartments,

and the dashed lines represent the role of the different infected compartments on disease transmission.

Fitting procedure

In the previous study, our model was fitted using a Bayesian melding approach ( [8]).
Here, we fitted the model to passive and active data from the former Bandundu
province of DRC using an approximate Bayesian computation Markov chain Monte
Carlo (ABC-MCMC) with a Metropolis-Hastings sampling method. We assumed
that only a proportion of inhabitants of Bandundu province are a risk of infection,
and we estimated that proportion through model fitting. We also assumed that a
proportion of individuals with stage 2 infection would not be identified/reported.

Eight parameters (Table 9) were fitted including the vector-to-human ratio
(rV H ), rates of passive detection for stage 1 (ζ1) and stage 2 (ζ2) infections, the
probability of developing symptomatic infection (νH ), relative duration of asymp-
tomatic infection compare to combined duration of stage 1 and 2 (σA), basic
reproductive number (R0), the proportion of the population at risk of infection
(Prisk), and proportion of stage 2 cases under-reported (κ). The basic reproductive
number was computed using the next generation matrix approach, and was used to
compute the transmission probability from tsetse to humans.
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We used the relative distance between data and model outcomes, ∆ as a measure
of error in the ABC-MCMC routine, with ∆ =

∑
i((Di −Mi)/Di)2 for reported

cases from data Di and reported cases from the model Mi in year i. We considered
different tolerance values varying from 0.5 to 15, and identified the value 5 as
the lowest value for which convergence was achieved after 500,000 MCMC steps
with a burn-in of 50,000 steps. The Gelman-Rubin diagnostic was used to test
for convergence of the MCMC chains [20]. Summary statistics and plots of the
posterior distributions are given in Table 10 and Figures 14–16, respectively.
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Notation Description Value Reference
H Total human population size Varies [5]
1/µH Life expectancy 59 years [21]
BH Human population growth rate calibrated to

H
[21]

BV Tsetse constant birth rate 0.05/day [22]
µV Tsetse death rate BV -
1/σV Susceptibility period in tsetse 1 day [22]
a Tsetse biting rate 0.333/day [22]
βHV Transmission probability from tsetse to

humans
Derived
from R0

-

1/τV Incubation period in tsetse 25 days [22]
1/τH Incubation period in humans 12 days [22]
1/γH1 Stage 1 infectious period without treat-

ment
526 days [23]

1/γH2 Stage 2 infectious period without treat-
ment

252 days [13]

1/δH Immune period in humans after treat-
ment

50 days [22]

βV H Transmission probability from humans
to tsetse

0.065 [22, 24]

ρ Probability that a HAT patients gets a
positive CATT and then a positive anti-
body/Trypanolysis test

0.87 [25]

ε1 Efficacy of stage 1 treatment (pentami-
dine)

0.94 [26]

ε2 Efficacy of stage 2 treatment
(nifurtimox-eflornithine)

0.965 [27]

p Probability of death due to stage 2 treat-
ment failure (nifurtimox-eflornithine)

0.007 [27]

Table 8: Parameter description for Model Y.
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Notation Description Unit Prior
Prisk Proportion of the human population at risk of

infection
- X ∼ Unif[0.2, 1]

R0 Basic reproductive number - X ∼ Unif[1, 3]
νH Probability of developing symptomatic infec-

tion
- X ∼ Unif[0.6, 1]

rV H Tsetse-to-human ratio - X ∼ Unif[1, 50]
σA Relative infectious period of asymptomatic

carriers
- X ∼ Unif[1, 5]

ζ1 Treatment seeking rate of stage 1 patients Year−1 X ∼ Unif[0, 1]
ζ2 Treatment seeking rate of stage 2 patients Year−1 X ∼ Unif[0, 5]
κ Proportion of stage 2 infection undetected - X ∼ Unif[0, 0.5]

Table 9: Priors for fitted parameters for Model Y.
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Parameter Fit A Fit B Fit C
Median 95% CI Median 95% CI Median 95% CI

R0 1.24 [1.11,1.51] 1.17 [1.09, 1.52] 1.23 [1.12, 1.52]
νH 0.73 [0.6, 0.9] 0.7 [0.6, 0.85] 0.71 [0.6, 0.84]
τ1 0.18 [0.01, 0.4] 0.06 [0.03, 0.11] 0.045 [0.034, 0.059]
τ2 0.22 [0.12, 0.45] 0.70 [0.24, 1.16] 0.46 [0.22, 0.78]
rV H 25.6 [1.0, 49.2] 31.09 [30.7, 31.5] 31.6 [31.2, 31.8]
Prisk 041 [0.21, 0.95] 0.42 [0.23, 0.87] 0.63 [0.43, 0.82]
κ 0.15 [0.05, 0.49] 0.17 [0.01, 0.47] 0.23 [0.02, 0.49]
σA 8.7 [3.3, 14.4] 6.0 [3.2, 12.1] 7.8 [2.6, 14.9]

Table 10: Summary statistics of the posterior distributions for parameters for Model Y.32



Figure 14: Posterior distributions of Fit A for Model Y.
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Figure 15: Posterior distributions of Fit B for Model Y. The same prior distributions
as in Fit A was used.
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Figure 16: Posterior distributions of Fit C for Model Y. The same prior distributions
as in Fit A was used.
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