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Appendix 1. Data generation process. 

We generated a seven-step ordinal outcome variable (y), on which a dichotomous exposure variable (xe) had no 

effect, whereas confounding variables (x1,…,x5) did. We did not model a relationship or correlation between the 

confounding variables. In order to be able to create y, we first created a latent variable (y*), which reflects the 

presence of confounding:(12) 

y* = ∑ 𝛽𝑗𝑥𝑗𝑖 + 𝜀𝑖
5
𝑗=1 , with εi ~N(0,1) 

In which x1i,…,x5i are the confounding variables for patient i and β1,…, β5 are the regression coefficients of these 

variables. The term εi denotes the error term, which varies per subject. Thus, observations with more confounding 

present (i.e. more exposed to dichotomous confounding present or with higher values for continuous confounding 

variables) generally have higher overall risk values. 

Out of y*, we created six variables (y*1 - y*6), that represented the six cut-off points between the seven outcome 

categories: 

y*1-6 = std(y*) + invnormal(α1-6) 

We standardized y* so that we could shift the placement of the latent variable distributions accurately, by adding 

the inverse normal (invnormal) of values between 0 and 1 (α1-6). For α1-6 we used 1/7, … , 6/7, as we aimed to generate 

a uniform distribution of y. In other words, α1-6 are the fractions of observations we aim to keep below each cut-off 

point of the mRS. Thus, every observation had six latent variables (y*1 - y*6), which only differed in the addition of 

the normal sextiles. Finally, we generated the ordinal outcome y based on the six latent variables created from y*  

if y*1 > 0 then y = 6, if y*2 > 0 then y = 5, …,  if y*6  > 0 then y = 1, else = 0 

This states, that if condition y*1 > 0 for an observation holds true, then y = 6. If y*1 > 0 is false, it checks whether y*2 

> 0 holds true. If y*2 > 0 is true, then y = 5, et cetera. If the last condition (y*6 > 0) is false, then y = 0. So, observations 

with y = 6, have a positive y*1 despite adding a negative term to the equation. At the other end of the spectrum, 

observations with y = 0 have a y*6 smaller than 0, despite adding a positive term. So, in short, observations with more 
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confounding present are more likely to have higher y*, and are therefore more likely to end up in higher categories 

of y.  

To complete the requirement for confounding, the exposure also needed to be dependent on the confounding 

variables. Therefore, we constructed the binary exposure (Xe) based on whether the confounding variable terms (βc1-

ci xc1-ci - βc1-ci xc1-ci(mean)) and a base risk of 0.5 are higher than a randomly generated number between 0 and 1. Here, 

we subtracted the mean of each confounding variable by its regression coefficient to balance the equation around 

0.5, and thus a similar number of cases exposed in each run and scenario. 

 


