RT Journal Article SR Electronic T1 COVID-19Predict – Predicting Pandemic Trends JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.09.09.20191593 DO 10.1101/2020.09.09.20191593 A1 Bosch, Jürgen A1 Wilson, Austin A1 O’Neil, Karthik A1 Zimmerman, Peter A. YR 2020 UL http://medrxiv.org/content/early/2020/09/11/2020.09.09.20191593.abstract AB Background Given the global public health importance of the COVID-19 pandemic, data comparisons that predict on-going infection and mortality trends across national, state and county-level administrative jurisdictions are vitally important. We have designed a COVID-19 dashboard with the goal of providing concise sets of summarized data presentations to simplify interpretation of basic statistics and location-specific current and short-term future risks of infection.Methods We perform continuous collection and analyses of publicly available data accessible through the COVID-19 dashboard hosted at Johns Hopkins University (JHU github). Additionally, we utilize the accumulation of cases and deaths to provide dynamic 7-day short-term predictions on these outcomes across these national, state and county administrative levels.Findings COVID-19Predict produces 2,100 daily predictions [or calculations] on the state level (50 States x3 models x7 days x2 cases and deaths) and 131,964 (3,142 Counties x3 models x7 days x2 cases and deaths) on the county level. To assess how robust our models have performed in making short-term predictions over the course of the pandemic, we used available case data for all 50 U.S. states spanning the period January 20 - August 16 2020 in a retrospective analysis. Results showed a 3.7% to −0.2% mean error of deviation from the actual case predictions to date.Interpretation Our transparent methods and admin-level visualizations provide real-time data reporting and forecasts related to on-going COVID-19 transmission allowing viewers (individuals, health care providers, public health practitioners and policy makers) to develop their own perspectives and expectations regarding public life activity decisions.Funding Financial resources for this study have been provided by Case Western Reserve University.Competing Interest StatementThe authors have declared no competing interest.Funding StatementFinancial resources for this study have been provided by Case Western Reserve University.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This work was deemed to not be human participant research and was thus exempt from protocol review.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will be made available upon request. https://covid19predict.com/dashboard