PT - JOURNAL ARTICLE AU - Bone, William P. AU - Siewert, Katherine M. AU - Jha, Anupama AU - Klarin, Derek AU - Damrauer, Scott M. AU - the VA Million Veteran Project AU - Chang, Kyong-Mi AU - Tsao, Philip S. AU - Assimes, Themistocles L. AU - Ritchie, Marylyn D. AU - Voight, Benjamin F. TI - Multi-trait association studies discover pleiotropic loci between Alzheimer’s disease and cardiometabolic traits AID - 10.1101/2020.08.26.20179366 DP - 2020 Jan 01 TA - medRxiv PG - 2020.08.26.20179366 4099 - http://medrxiv.org/content/early/2020/09/01/2020.08.26.20179366.short 4100 - http://medrxiv.org/content/early/2020/09/01/2020.08.26.20179366.full AB - Identification of genetic risk factors that are shared between Alzheimer’s disease (AD) and other traits, i.e., pleiotropy, can help improve our understanding of the etiology of AD and potentially detect new therapeutic targets. Motivated by previous epidemiological correlations observed between cardiometabolic traits and AD, we performed a set of bivariate genome-wide association studies coupled with colocalization analysis to identify loci that are shared between AD and eleven cardiometabolic traits. We identified three previously unreported pleiotropic trait associations at known AD loci as well as four novel pleiotropic loci. One associated locus was tagged by a low-frequency coding variant in the gene DOCK4 and is potentially implicated in its alternative splicing. Statistical colocalization with expression quantitative trait loci identified by the Genotype-Tissue Expression (GTEx) project identified additional candidate genes, including ACE, the target of the hypertensive drug class of ACE-inhibitors. We found that the allele associated with decreased ACE expression in brain tissue was also associated with increased risk of AD, providing human genetic evidence of a potential increase in AD risk from use of an established anti-hypertensive therapeutic. Overall, our results support a complex genetic relationship between AD and these cardiometabolic traits, and the candidate causal genes identified suggest that blood pressure and immune response play a role in the pleiotropy between these traits.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research is based on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration, and was supported by the Department of Veterans Affairs Office of R&D award I01-BX003362 (to P.S.T. and K.M.C) and IK2-CX001780 (to S.M.D). This publication does not represent the views of the Department of Veteran Affairs or the United States Government. This work was supported by the American Heart Association (20PRE35120109 to W.P.B.), the National Institutes of Health (DK101478 to B.F.V. and P50GM115318-01 to M.D.R.), and a Linda Pechenik Montague Investigator Award (to B.F.V.).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:University of PennsylvaniaAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesGWAS summary statistics data used in the paper are available at: AD data PMID:30617256, BFP data PMID:26833246, BMI data PMID: 30124842, CHD data PMID: 29212778, DBP data PMID: 30224653, HDL data PMID: 30275531, LDL data PMID: 30275531, SBP data PMID: 30224653, TC data PMID: 30275531, TG data PMID: 30275531, T2D data PMID: 30297969, WHRadjBMI data PMID: 30239722 Access to the MVP lipids data can be obtained from dbGAP (phs001672.v4.p1, pha004828.1, pha004831.1, pha004837.1, pha004834.1) and GLGC European ancestry only data can be obtained at: http://csg.sph.umich.edu/willer/public/lipids/ or http://lipidgenetics.org/.