RT Journal Article SR Electronic T1 Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington’s disease JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.08.06.20169524 DO 10.1101/2020.08.06.20169524 A1 Rodrigues, Filipe B A1 Byrne, Lauren M A1 Lowe, Alexander J A1 Tortelli, Rosanna A1 Heins, Mariette A1 Flik, Gunnar A1 Johnson, Eileanoir B A1 Vita, Enrico De A1 Scahill, Rachael I A1 Giorgini, Flaviano A1 Wild, Edward J YR 2020 UL http://medrxiv.org/content/early/2020/08/07/2020.08.06.20169524.abstract AB Background Converging lines of evidence from cell, yeast and animal models, and post-mortem human brain tissue studies, support the involvement of the kynurenine pathway (KP) in Huntington’s disease (HD) pathogenesis. Quantifying KP metabolites in HD biofluids is desirable, both to study pathobiology, and as a potential source of biomarkers to quantify pathway dysfunction and evaluate the biochemical impact of therapeutic interventions targeting its components.Methods In a prospective single-site controlled cohort study with standardised collection of CSF, blood, phenotypic and imaging data, we used high-performance liquid-chromatography to measure the levels of KP metabolites – tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid and quinolinic acid – in CSF and plasma of 80 participants (20 healthy controls, 20 premanifest HD, and 40 manifest HD). We investigated short-term stability, intergroup differences, associations with clinical and imaging measures, and derived sample-size calculation for future studies.Findings Overall, KP metabolites in CSF and plasma were stable over 6 weeks, displayed no significant group differences and were not associated with clinical or imaging measures. Larger sample sizes would be needed to show differences in future studies.Interpretation We conclude that the studied metabolites are readily and reliably quantifiable in both biofluids in controls and HD gene expansion carriers. However, we found little evidence to support a substantial derangement of the KP in HD, at least to the extent that it is reflected by the levels of the metabolites in patient-derived biofluids.Fund This study was supported by the Medical Research Council UK and CHDI foundation.Evidence before this study The kynurenine pathway is a metabolic process needed for the degradation of tryptophan – an essential amino acid. Several by-products of this pathway have been implicated in the pathobiology of Huntington’s disease, a fatal neurodegenerative condition. Studying these metabolites could help better understand the biology of the condition and accelerate treatment development. In 2018, a systematic review concluded that only a small number of studies attempted to investigate the levels of these by-products in human biofluids, with the majority being limited by methodologic frailties and therefore requiring further study.Added value of this study We used a large prospective cohort consisting of Huntington’s disease mutation carriers and healthy controls to study the metabolic by-products of the kynurenine pathway. Matched cerebrospinal fluid and blood were collected using standardized protocol and analysed with high-performance liquid-chromatography. None of the studied metabolites showed associations with disease stage or with well-known clinical and imaging markers of the disease.Implication of all the available evidence Our results show that substantial alterations of the kynurenine pathway are not present in patients with Huntington’s disease compared to healthy controls, at least to the extent that is measurable in cerebrospinal fluid or blood. Whilst our results discourage the use of these metabolites as diagnostic and prognostic biomarkers, they do not reject the notion that regional- and tissue-specific alterations may exist, and that they may possess value as pharmacodynamic biomarkers in clinical trials targeting the kynurenine pathway.Competing Interest StatementFBR, LMB, AJL, RT, EBJ, RIS, EJW are University College London employees. MA is a University College London Hospitals NHS Foundation Thrust employee. EDV is a King's College London employee. MH and GF are full-time employees of Charles River Laboratories. FG is an employee of the University of Leicester. FBR has provided consultancy services to GLG and F. Hoffmann-La Roche Ltd. LMR has provided consultancy services to GLG, F. Hoffmann-La Roche Ltd, Genentech and Annexon. RIS has undertaken consultancy services for Ixico Ltd. EJW reports grants from Medical Research Council (MRC), CHDI Foundation, and F. Hoffmann-La Roche Ltd during the conduct of the study; personal fees from Hoffman La Roche Ltd, Triplet Therapeutics, PTC Therapeutics, Shire Therapeutics, Wave Life Sciences, Mitoconix, Takeda, Loqus23. All honoraria for these consultancies were paid through the offices of UCL Consultants Ltd., a wholly owned subsidiary of University College London. University College London Hospitals NHS Foundation Trust, has received funds as compensation for conducting clinical trials for Ionis Pharmaceuticals, Pfizer and Teva Pharmaceuticals. This study was supported in part by a project grant from the MRC (MR/N00373X/1) awarded to FG.Clinical Protocols https://rdr.ucl.ac.uk/articles/media/HDCSF_Clinical_study_protocol_2015-10-19/11828448/1 Funding StatementThis study was supported by the Medical Research Council UK and CHDI foundation.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was performed in accordance with the principles of the Declaration of Helsinki, and the International Conference on Harmonization Good Clinical Practice standards. Ethical approval was obtained from the London Camberwell St Giles Research Ethics Committee (15/LO/1917). Prior to undertaking study procedures, all participants gave informed consent which was obtained by clinical staff.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data that support the findings of this study are available on request from the corresponding author, EJW. The data are not publicly available due to their containing information that could compromise the privacy of research participants.