RT Journal Article SR Electronic T1 Modeling the effectiveness of Esperanza Window Traps as a complementary vector control strategy for achieving the community-wide elimination of Onchocerciasis JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2024.10.25.24316075 DO 10.1101/2024.10.25.24316075 A1 Bilal, Shakir A1 Smith, Morgan E. A1 Sharma, Swarnali A1 Zaatour, Wajdi A1 Newcomb, Ken A1 Unnasch, Thomas R. A1 Michael, Edwin YR 2024 UL http://medrxiv.org/content/early/2024/10/27/2024.10.25.24316075.abstract AB Mathematical models of parasite transmission provide powerful quantitative tools for evaluating the impact of interventions for bringing about the control or elimination of community-level disease transmission. A key attribute of such tools is that they allow integration of field observations regarding the effectiveness of an intervention with the processes of parasite transmission in communities to allow the exploration of parameters connected with the optimal deployment of the intervention to meet various community-wide control or elimination goals. In this work, we analyze the effectiveness of the Esperanza Window Trap (EWT), a recently developed black fly control tool, for eliminating the transmission of Onchocera volvulus in endemic settings by coupling seasonally-driven onchocerciasis transmission models identified for representative villages in Uganda with a landscape-level, spatially-informed model of EWT trap configurations for reducing Simulid fly populations in a given endemic setting. Our results indicate that when EWT traps are used in conjunction with MDA programs there are significant savings in the number of years needed to reach a specified set of elimination targets compared to the use of MDA alone. Adding EWT after the meeting of these thresholds and stoppage of MDA also significantly enhances the long-term sustained elimination of onchocerciasis. The number of traps required is driven by the trap black fly killing efficiency, capture range, desired coverage, inter-trap distance, size of location, and the spatial heterogeneity obtaining for the fly population in a given village/site. These findings provide important new knowledge regarding the feasibility and effectiveness of the community-wide use of EWT as a supplementary intervention alongside MDA for accelerating and sustaining the achievement of sustainable onchocerciasis elimination. Our coupling of landscape models of EWT deployment with the seasonal onchocerciasis transmission model also highlights how population-level macroparasite models may be extended effectively for modeling the effects of spatio-temporal processes on control efforts.Author summary While empirical studies have highlighted the effectiveness of the Esperanza Window Trap (EWT) as a potential tool for reducing biting black fly populations, information regarding how to implement these traps in the field to bring about community-wide elimination of onchocerciasis transmission is lacking. Here, we show how coupling a data-driven seasonal onchocerciasis transmission model with a landscape model of EWT trap networks can provide a flexible and powerful quantitative framework for addressing the effectiveness of deploying EWT in the field for bringing about parasite elimination in conjunction with mass drug administration (MDA). Our results demonstrate that including EWT traps with ivermectin MDA can significantly reduce timelines to reach elimination thresholds, while introducing these traps post-MDA can ensure the sustained long-term elimination of parasite transmission. The optimal trap configuration for meeting these goals will depend on the trap efficiencies for fly capture and killing, trap attractant range, field coverage, inter-trap distance, number of traps used, area of a control setting and the spatial variation observed for the density of biting black flies. This work also highlights how population-level models of macroparasite transmission dynamics could be extended successfully to effectively investigate these questions.Competing Interest StatementThe authors have declared no competing interest.Funding StatementE.M. and T.R.U. thank the National Institute of Allergy and Infectious Diseases (https://www.niaid.nih.gov/) for financial support of this study (Grant RO1AI123245). The funders had no role in study design, analysis, decision to publish, or preparation of the manuscript. PoweredAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present work are contained in the manuscript https://github.com/EdwinMichaelLab/OnchoEWT