PT - JOURNAL ARTICLE AU - Chassagnon, Guillaume AU - Paragios, Nikos TI - Holistic AI-Driven Quantification, Staging and Prognosis of COVID-19 Pneumonia AID - 10.1101/2020.04.17.20069187 DP - 2020 Jan 01 TA - medRxiv PG - 2020.04.17.20069187 4099 - http://medrxiv.org/content/early/2020/07/10/2020.04.17.20069187.short 4100 - http://medrxiv.org/content/early/2020/07/10/2020.04.17.20069187.full AB - Improving screening, discovering therapies, developing a vaccine and performing staging and prognosis are decisive steps in addressing the COVID-19 pandemic. Staging and prognosis are especially crucial for organizational anticipation (intensive-care bed availability, patient management planning) and accelerating drug development; through rapid, reproducible and quantified response-to-treatment assessment. In this letter, we report on an artificial intelligence solution for performing automatic staging and prognosis based on imaging, clinical, comorbidities and biological data. This approach relies on automatic computed tomography (CT)-based disease quantification using deep learning, robust data-driven identification of physiologically-inspired COVID-19 holistic patient profiling, and strong, reproducible staging/outcome prediction with good generalization properties using an ensemble of consensus methods. Highly promising results on multiple independent external evaluation cohorts along with comparisons with expert human readers demonstrate the potentials of our approach. The developed solution offers perspectives for optimal patient management, given the shortage of intensive care beds and ventilators1, 2, along with means to assess patient response to treatment.Competing Interest StatementThe authors have declared no competing interest.Funding StatementN/AAuthor DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesN/A