RT Journal Article SR Electronic T1 A novel deterministic forecast model for COVID-19 epidemic based on a single ordinary integro-differential equation JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.04.29.20084376 DO 10.1101/2020.04.29.20084376 A1 Köhler-Rieper, Felix A1 Röhl, Claudius H. F. A1 Micheli, Enrico De YR 2020 UL http://medrxiv.org/content/early/2020/07/10/2020.04.29.20084376.abstract AB In this paper we present a new approach to deterministic modelling of COVID-19 epidemic. Our model dynamics is expressed by a single prognostic variable which satisfies an integro-differential equation. All unknown parameters are described with a single, time-dependent variable R(t). We show that our model has similarities to classic compartmental models, such as SIR, and that the variable R(t) can be interpreted as a generalized effective reproduction number. The advantages of our approach are the simplicity of having only one equation, the numerical stability due to an integral formulation and the reliability since the model is formulated in terms of the most trustable statistical data variable: the number of cumulative diagnosed positive cases of COVID-19. Once this dynamic variable is calculated, other non-dynamic variables, such as the number of heavy cases (hospital beds), the number of intensive-care cases (ICUs) and the fatalities, can be derived from it using a similarly stable, integral approach. The formulation with a single equation allows us to calculate from real data the values of the sample effective reproduction number, which can then be fitted. Extrapolated values of R(t) can be used in the model to make reliable forecasts, though under the assumption that measures for reducing infections are maintained. We have applied our model to more than 15 countries and the ongoing results are available on a web-based platform [1]. In this paper, we focus on the data for two exemplary countries, Italy and Germany, and show that the model is capable of reproducing the course of the epidemic in the past and forecasting its course for a period of four to five weeks with a reasonable numerical stability.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo funding was received for this researchAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:exemption for the research describedAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data we used are official data made available by the John-Hopkins-University and the web site worldometers.info https://coronavirus.jhu.edu/map.html https://www.worldometers.info/coronavirus/