RT Journal Article SR Electronic T1 A systematic review of aperiodic neural activity in clinical investigations JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2024.10.14.24314925 DO 10.1101/2024.10.14.24314925 A1 Donoghue, Thomas YR 2024 UL http://medrxiv.org/content/early/2024/10/15/2024.10.14.24314925.abstract AB In the study of neuro-electrophysiological recordings, aperiodic neural activity – activity with no characteristic frequency – has increasingly become a common feature of study. This interest has rapidly extended to clinical work, with many reports investigating aperiodic activity from patients from a broad range of clinical disorders. This work typically seeks to evaluate aperiodic activity as a putative biomarker relating to diagnosis or treatment response, and/or as a potential marker of underlying physiological activity. There is thus far no clear consensus on if and how aperiodic neural activity relates to clinical disorders, nor on the best practices for how to study it in clinical research. To address this, this systematic literature review, following PRISMA guidelines, examines reports of aperiodic activity in electrophysiological recordings with human patients with psychiatric and/or neurological disorders, finding 143 reports across 35 distinct disorders. Reports within and across disorders are summarized to evaluate current findings and examine what can be learned as pertains to the analysis, interpretations, and overall utility of aperiodic neural activity in clinical investigations. Aperiodic activity is commonly reported to relate to clinical diagnoses, with 31 of 35 disorders reporting a significant effect in diagnostic and/or treatment related studies. However, there is variation in the consistency of results across disorders, with the heterogeneity of patient groups, disease etiologies, and treatment status arising as common themes across different disorders. Overall, the current variability of results, potentially confounding covariates, and limitations in current understanding of aperiodic activity suggests further work is needed before aperiodic activity can be established as a potential biomarker and/or marker of underlying pathological physiology. Finally, a series of recommendations are proposed, based on the findings, limitations, and key discussion topics of the current literature to assist with guiding productive future work on the clinical utility of studying aperiodic neural activity.Project Repository The project repository contains code & data related to this project: https://github.com/TomDonoghue/AperiodicClinicalCompeting Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any funding.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThe literature data collected in this systematic review are available in the project repository and linked from the manuscript. https://github.com/TomDonoghue/AperiodicClinical EEGelectroencephalographyMEGmagnetoencephalographyiEEGintracranial EEGDBSdeep brain stimulationRNSresponsive neurostimulation