RT Journal Article SR Electronic T1 Modeling COVID-19 dynamics in Illinois under non-pharmaceutical interventions JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.06.03.20120691 DO 10.1101/2020.06.03.20120691 A1 Wong, George N. A1 Weiner, Zachary J. A1 Tkachenko, Alexei V. A1 Elbanna, Ahmed A1 Maslov, Sergei A1 Goldenfeld, Nigel YR 2020 UL http://medrxiv.org/content/early/2020/06/05/2020.06.03.20120691.abstract AB We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable time delays without changing its model topology. Bayesian estimation of model parameters is carried out using Markov Chain Monte Carlo (MCMC) methods. This framework allows us to treat all available input information, including both the previously published parameters of the epidemic and available local data, in a uniform manner. To accurately model deaths as well as demand on the healthcare system, we calibrate our predictions to total and in-hospital deaths as well as hospital and ICU bed occupancy by COVID-19 patients. We apply this model not only to the state as a whole but also its sub-regions in order to account for the wide disparities in population size and density. Without prior information on non-pharmaceutical interventions (NPIs), the model independently reproduces a mitigation trend closely matching mobility data reported by Google and Unacast. Forward predictions of the model provide robust estimates of the peak position and severity and also enable forecasting the regional-dependent results of releasing Stay-at-Home orders. The resulting highly constrained narrative of the epidemic is able to provide estimates of its unseen progression and inform scenarios for sustainable monitoring and control of the epidemic.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by the University of Illinois System Office, the Office of the Vice-Chancellor for Research and Innovation, the Grainger College of Engineering, and the Department of Physics at the University of Illinois at Urbana-Champaign. Z.J.W.is supported in part by the United States Department of Energy Computational Science Graduate Fellowship, pro-vided under Grant No. DE-FG02-97ER25308. This work made use of the Illinois Campus Cluster, a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for Supercomputing Applications (NCSA) and which is supported by funds from the University of Illinois at Urbana-Champaign. This research was partially done at, and used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This manuscript does not involve research on human subjects. The public data used in this study contains no identifiable private information.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe manuscript uses data provided by the Illinois Department of Public Health through a Data Use Agreement with Civis Analytics. The source code for the model is freely available online at https://github.com/uiuc-covid19-modeling/pydemic https://github.com/uiuc-covid19-modeling/pydemic