RT Journal Article SR Electronic T1 Quantifying infectious disease epidemic risks: A practical approach for seasonal pathogens JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2024.07.30.24311220 DO 10.1101/2024.07.30.24311220 A1 Kaye, Alexander Richard A1 Guzzetta, Giorgio A1 Tildesley, Michael A1 Thompson, Robin YR 2024 UL http://medrxiv.org/content/early/2024/08/01/2024.07.30.24311220.abstract AB For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is usually absent from a host population, a key public health policy question is whether the pathogen's arrival will initiate local transmission, which depends on the season in which arrival occurs. This question can be addressed by estimating the probability of a major outbreak (the probability that introduced cases will initiate sustained local transmission). A standard approach for inferring this probability exists for seasonal pathogens (involving calculating the Case Epidemic Risk; CER) based on the mathematical theory of branching processes. Under that theory, the probability of pathogen extinction is estimated, neglecting depletion of susceptible individuals. The CER is then one minus the extinction probability. However, as we show, if transmission cannot occur for long periods of the year (e.g., over winter or over summer), the pathogen will inevitably go extinct, leading to a CER of zero even if seasonal outbreaks can occur. This renders the CER uninformative in those scenarios. We therefore devise an alternative approach for inferring outbreak risks for seasonal pathogens (involving calculating the Threshold Epidemic Risk; TER). Estimation of the TER involves calculating the probability that introduced cases will initiate a local outbreak in which a threshold number of infections is exceeded before outbreak extinction. For simple seasonal epidemic models, such as the stochastic Susceptible-Infectious-Removed model, the TER can be calculated numerically (without model simulations). For more complex models, such as stochastic host-vector models, the TER can be estimated using model simulations. We demonstrate the application of our approach by considering Chikungunya virus in northern Italy as a case study. In that context, transmission is most likely in summer, when environmental conditions promote vector abundance. We show that the TER provides more useful assessments of outbreak risks than the CER, enabling practically relevant risk quantification for seasonal pathogens.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was funded by the EPSRC via the Mathematics for Real-World Systems CDT (EP/S022244/1; ARK and MJT) and the Wellcome Trust via a Digital Technology Development Award (226057/Z/22/Z; RNT).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Yes I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data are available onlinehttps://github.com/KayeARK/Quantifying_Epidemic_Risks