RT Journal Article SR Electronic T1 Estimating COVID-19 outbreak risk through air travel JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.04.16.20067496 DO 10.1101/2020.04.16.20067496 A1 Daon, Y. A1 Thompson, R.N. A1 Obolski, U. YR 2020 UL http://medrxiv.org/content/early/2020/06/03/2020.04.16.20067496.abstract AB Background Substantial limitations have been imposed on passenger air travel to reduce transmission of SARS-CoV-2 between regions and countries. However, as case numbers decrease, air travel will gradually resume. We considered a future scenario in which case numbers are low and air travel returns to normal. Under that scenario, there will be a risk of outbreaks in locations worldwide due to imported cases. We estimated the risk of different locations acting as sources of future COVID-19 outbreaks elsewhere.Methods We use modelled global air travel data and population density estimates from locations worldwide to analyse the risk that 1364 airports are sources of future COVID-19 outbreaks. We use a probabilistic, branching-process based approach that considers the volume of air travelers between airports and the reproduction number at each location, accounting for local population density.Results Under the scenario we model, we identify airports in East Asia as having the highest risk of acting as sources of future outbreaks. Moreover, we investigate the locations most likely to cause outbreaks due to air travel in regions that are large and potentially vulnerable to outbreaks: India, Brazil and Africa. We find that outbreaks in India and Brazil are most likely to be seeded by individuals travelling from within those regions. We find that this is also true for less vulnerable regions, such as the United States, Europe, and China. However, outbreaks in Africa due to imported cases are instead most likely to be initiated by passengers travelling from outside the continent.Conclusions Variation in flight volumes and destination population densities create a non-uniform distribution of the risk that different airports pose of acting as the source of an outbreak. Accurate quantification of the spatial distribution of outbreak risk can therefore facilitate optimal allocation of resources for effective targeting of public health interventions.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by The Raymond and Beverly Sackler Post-Doctoral Scholarship (YD) and by a Junior Research Fellowship from Christ Church, Oxford (RNT). Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data used are available in the supplementary material and in a github repository. https://github.com/yairdaon/infections