PT - JOURNAL ARTICLE AU - Jang, HyunA AU - Lee, Jiyun AU - Nguyen, Vy Kim AU - Shin, Hyeong-Moo TI - Environment-Wide Association Study of Cognitive Function in U.S. Older Adults using the NHANES Data AID - 10.1101/2024.07.22.24310659 DP - 2024 Jan 01 TA - medRxiv PG - 2024.07.22.24310659 4099 - http://medrxiv.org/content/early/2024/07/23/2024.07.22.24310659.short 4100 - http://medrxiv.org/content/early/2024/07/23/2024.07.22.24310659.full AB - Neurodegenerative diseases pose increasing challenges to global aging populations. Cognitive decline in older adults is an initial indicator of neurodegenerative diseases, yet comprehensive research on environmental chemical exposures related to cognitive decline is limited. This study uses Environment-Wide Association Study (EWAS) framework to investigate associations of environmental chemicals with cognitive function in individuals aged ≥60 years. We used the Digit Symbol Substitution Test (DSST) scores (lower scores indicate cognitive decline) and chemical biomarker data of the U.S. National Health and Nutrition Examination Survey (NHANES) spanning four cycles (1999-2000, 2001-2002, 2011-2012, 2013-2014). We conducted multiple survey-weighted regression to identify biomarkers associated with DSST scores, penalized logit regression to estimate odds ratio (OR) of cognitive decline with identified biomarkers, and correlation network analyses to examine relationships among identified biomarkers and cognitive decline. After correction for multiple comparisons, 27 out of 173 biomarkers having a ≥10% detection rate were associated with DSST scores (q-value <0.05). Among them, increased odds of cognitive decline were associated with elevated levels of blood lead (Pb) (OR = 1.12, 95% CI: 1.01,1.42), blood 1,4-dichlorobenzene (1,4-DCB) (OR = 1.34, 95% CI: 1.17, 1.54), and urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (OR = 1.34, 95% CI: 1.10, 1.62). Correlation network showed biomarkers that potentially impact cognitive decline upon related health conditions, such as stroke. In conclusion, leveraging the EWAS framework enables us to identify chemical biomarkers that were not previously discovered from traditional approaches of examining a small number of chemicals at a time. While our findings provide foundation for further research, longitudinal studies are warranted to elucidate causal relationships.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any funding.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study used ONLY openly available human data that were originally located at: https://www.cdc.gov/nchs/nhanes.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThe data and R code can be shared upon request to the corresponding author.