PT - JOURNAL ARTICLE AU - Lee, Se Yoon AU - Lei, Bowen AU - Mallick, Bani K. TI - Estimation of COVID-19 spread curves integrating global data and borrowing information AID - 10.1101/2020.04.23.20077065 DP - 2020 Jan 01 TA - medRxiv PG - 2020.04.23.20077065 4099 - http://medrxiv.org/content/early/2020/05/19/2020.04.23.20077065.short 4100 - http://medrxiv.org/content/early/2020/05/19/2020.04.23.20077065.full AB - Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. There are no drugs or other therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19: information on the disease is very limited and scattered even if it exists. This motivates the use of data integration, combining data from diverse sources and eliciting useful information with a unified view of them. In this paper, we propose a Bayesian hierarchical model that integrates global data for real-time prediction of infection trajectory for multiple countries. Because the proposed model takes advantage of borrowing information across multiple countries, it outperforms an existing individual country-based model. As fully Bayesian way has been adopted, the model provides a powerful predictive tool endowed with uncertainty quantification. Additionally, the proposed model uses countrywide covariates to adjust infection trajectories in curve fitting. A joint variable selection technique has been integrated into the proposed modeling scheme, which aimed to identify possible country-level risk factors for severe disease due to COVID-19.Competing Interest StatementThe authors have declared no competing interest.Funding StatementN/AAuthor DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData used in the research is publicly available.