RT Journal Article SR Electronic T1 Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.05.15.20101097 DO 10.1101/2020.05.15.20101097 A1 Leung, Nicole Y. A1 Bulterys, Michelle A. A1 Bulterys, Philip L. YR 2020 UL http://medrxiv.org/content/early/2020/05/19/2020.05.15.20101097.abstract AB Background The burden of the coronavirus disease 2019 (COVID-19) pandemic has been geographically disproportionate. Certain weather factors and population characteristics are thought to drive transmission, but studies examining these factors are limited. We aimed to identify weather, sociodemographic, and geographic drivers of COVID-19 at the global scale using a comprehensive collection of country/territory-level data, and to use discovered associations to estimate the timing of community transmission.Methods We examined COVID-19 cases and deaths reported up to May 2, 2020 across 205 countries and territories in relation to weather data collected from capital cities for the eight weeks prior to and four weeks after the date of the first reported case, as well as country/territory-level population, geographic, and planetary data. We performed univariable and multivariable regression modeling and odds ratio analyses to investigate associations with COVID-19 cases, deaths, and epidemic growth rate. We also conducted maximum likelihood analysis to estimate the timing of initial community spread.Findings Lower temperature (p<0.0001), lower humidity (p=0.006), higher altitude (p=0.0080), higher percentage of urban population (p<0.0001), increased air travelers (p=0.00019), and higher prevalence of obesity (p<0.0001) were strong independent predictors of national COVID-19 incidence, mortality, and epidemic growth rate. Temperature at 5–7 weeks before the first reported case best predicted epidemic growth, suggesting that significant community transmission was occurring on average 1–2 months prior to detection.Conclusions The results of this ecologic analysis demonstrate that global COVID-19 burden and timing of country-level epidemic growth can be predicted by weather and population factors. In particular, we find that cool, dry, and higher altitude environments, as well as more urban and obese populations, may be conducive to more rapid epidemic spread.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNone.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData referred to in this manuscript will be made publicly available at the time of peer-reviewed publication.