RT Journal Article SR Electronic T1 Brazilian Modeling of COVID-19(BRAM-COD): a Bayesian Monte Carlo approach for COVID-19 spread in a limited data set context JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.04.29.20081174 DO 10.1101/2020.04.29.20081174 A1 Dana, Samy A1 Simas, Alexandre B. A1 Filardi, Bruno A. A1 Rodriguez, Rodrigo N. A1 Valiengo, Leandro da Costa Lane A1 Gallucci-Neto, Jose YR 2020 UL http://medrxiv.org/content/early/2020/05/17/2020.04.29.20081174.abstract AB Background The new coronavirus respiratory syndrome disease (COVID-19) pandemic has become a major health problem worldwide. Many attempts have been devoted to modeling the dynamics of new infection rates, death rates, and the impact of the disease on health systems and the world economy. Most of these modeling concepts use the Susceptible-Infectious-Susceptible (SIS) and Susceptible-Exposed-Infected-Recovered (SEIR) compartmental models; however, wide imprecise outcomes in forecasting can occur with these models in the context of poor data, low testing levels, and a nonhomogeneous population.Objectives To predict Brazilian ICU beds demand over time and during COVID-19 pandemic “peak”.Methods In the present study, we describe a Bayesian COVID-19 model combined with a Hamiltonian Monte Carlo algorithm to forecast quantitative predictions of infections, number of deaths and the demand for critical care beds in the next month in the Brazilian context of scarce data availability. We also estimated COVID-19 spread tendency in the state of São Paulo and forecasted the demand for critical care beds, as São Paulo is the epicenter of the Latin America pandemic.Results Our model estimated that the number of infected individuals would be approximately 6.5 million (median) on April 25, 2020, and would reach 16 to 17 million (median) by the end of August 2020 in Brazil. The probability that an infected individual requires ICU-level care in Brazil is 0.5833%. Our model suggests that the current level of mitigation seen in São Paulo is sufficient to reach Rt < 1, thus attaining a “peak” in the short term. In São Paulo state, the total number of deaths is estimated to be around 9,000 (median) with the 2.5% quantile being 6,600 deaths and the 97.5% quantile being around 13,350 deaths. Also, São Paulo will not attain its maximum capacity of ICU beds if the current trend persists over the long term.Conclusions The COVID-19 pandemic should peak in Brazil between May 8 and May 20, 2020 with a fatality rate lower than that suggested in the literature. The northern and northeastern regions of Brazil will suffer from a lack of available ICU beds, the southern and central-western regions appear to have sufficient ICU beds, finally, the southeastern region seems to have enough ICU beds only if it shares private beds with the publicly funded Unified Health System (SUS). The model predicts that, if the current policies and population behavior are maintained throughout the forecasted period, by the end of August 2020, Brazil will have around 7.6% to 8.2% of its population immune to COVID-19.Competing Interest StatementSamy Dana works as Head of Content of Easyinvest (investment broker), with no relevant or material financial interests that relate to the work described in this paper. Alexandre B Simas declare that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Bruno Filardi declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Rodrigo N Rodriguez declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Leandro Lane da Costa Valiengo declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Jose Gallucci-Neto declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Funding StatementAlexandre B. Simas acknowledges the financial support from CNPq. Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will be available on demand.