PT - JOURNAL ARTICLE AU - Hofmann, Jonathan AU - Bouras, Andrew AU - Patel, Dhruv AU - Chetla, Nitin AU - Balaji, Nia AU - Boulis, Michael TI - Predicting 30-Day In-Hospital Mortality in Surgical Patients: A Logistic Regression Model Using Comprehensive Perioperative Data AID - 10.1101/2024.05.18.24307573 DP - 2024 Jan 01 TA - medRxiv PG - 2024.05.18.24307573 4099 - http://medrxiv.org/content/early/2024/05/20/2024.05.18.24307573.short 4100 - http://medrxiv.org/content/early/2024/05/20/2024.05.18.24307573.full AB - Background Accurate prediction of postoperative outcomes, particularly 30-day in-hospital mortality, is crucial for improving surgical planning, patient counseling, and resource allocation. This study aimed to develop and validate a logistic regression model to predict 30-day in-hospital mortality using comprehensive perioperative data from the INSPIRE dataset.Methods We conducted a retrospective analysis of the INSPIRE dataset, comprising approximately 130,000 surgical cases from Seoul National University Hospital between 2011 and 2020. The primary objective was to develop a logistic regression model using preoperative and intraoperative variables. Key predictors included demographic information, clinical variables, laboratory values, and the emergency status of the operation. Missing data were addressed through multiple imputation, and feature selection was performed using univariate analysis and clinical judgment. The model was validated using cross-validation and assessed for performance using ROC AUC and precision-recall AUC metrics.Results The logistic regression model demonstrated high predictive accuracy, with an ROC AUC of 0.978 and a precision-recall AUC of 0.958. Significant predictors of 30-day in-hospital mortality included emergency status of the operation (OR: 1.56), preoperative prothrombin time (PT/INR) (OR: 1.53), potassium levels (OR: 1.49), body mass index (BMI) (OR: 1.37), serum sodium (OR: 1.11), creatinine levels (OR: 1.04), and albumin levels (OR: 0.85).Conclusion This study successfully developed and validated a logistic regression model to predict 30-day in-hospital mortality using comprehensive perioperative data. The model’s high predictive accuracy and reliance on routinely collected clinical and laboratory data enhance its feasibility for integration into existing clinical workflows, providing real-time risk assessments to healthcare providers. Future research should focus on external validation in diverse clinical settings and prospective studies to assess the practical impact of this predictive model.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present work are contained in the manuscript https://github.com/hofmannj0n/biomedical-research