RT Journal Article SR Electronic T1 Disentangling the relationship between cancer mortality and COVID-19 in the US JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2024.01.02.24300715 DO 10.1101/2024.01.02.24300715 A1 Hansen, Chelsea L. A1 Viboud, Cécile A1 Simonsen, Lone YR 2024 UL http://medrxiv.org/content/early/2024/05/07/2024.01.02.24300715.abstract AB Several countries have reported that deaths with a primary code of cancer did not rise during COVID-19 pandemic waves compared to baseline pre-pandemic levels. This is in apparent conflict with findings from cohort studies where cancer has been identified as a risk factor for COVID-19 mortality. Here we further elucidate the relationship between cancer mortality and COVID-19 on a population level in the US by testing the impact of death certificate coding changes during the pandemic and leveraging heterogeneity in pandemic intensity across US states. We computed excess mortality from weekly deaths during 2014-2020 nationally and for three states with distinct COVID-19 wave timing (NY, TX, and CA). We compared pandemic-related mortality patterns from underlying and multiple cause (MC) death data for six types of cancer and compared to that seen for chronic conditions such as diabetes and Alzheimer’s. Any death certificate coding changes should be eliminated by study of MC data.Nationally in 2020, we found only modest excess MC cancer mortality (∼13,600 deaths), representing a 3% elevation over baseline level. Mortality elevation was measurably higher for less deadly cancers (breast, colorectal, and hematologic, 2-7%) than cancers with a poor 5-year survival (lung and pancreatic, 0-1%). In comparison, there was substantial elevation in MC deaths from diabetes (37%) and Alzheimer’s (19%). Homing in on the intense spring 2020 COVID-19 wave in NY, mortality elevation was 1-16% for different types of cancer and 128% and 49% for diabetes and Alzheimer’s, respectively. To investigate the peculiar absence of excess mortality on deadly cancers, we implemented a demographic model and simulated the expected covid-related mortality using COVID-19 attack rates, life expectancy, population size and mean age for each chronic condition. This model indicates that these factors largely explain the considerable differences in observed excess mortality between these chronic conditions during the COVID-19 pandemic, even if cancer had increased the relative risk of mortality by a factor of 2 or 5.In conclusion, we found limited elevation in cancer mortality during COVID-19 waves, even after considering MC mortality, and this was especially pronounced for the deadliest cancers. Our demographic model predicted low expected excess mortality in populations living with certain types of cancer, even if cancer is a risk factor for COVID-19 fatality, due to competing mortality risk. We also find a moderate increase in excess mortality from hematological cancers, aligned with other types of observational studies. While our study concentrates on the immediate consequences of the COVID-19 pandemic on cancer mortality in 2020, further research should consider excess mortality in the complete pandemic period. Also, a study of the delayed impact of the pandemic on cancer mortality due to delayed diagnosis and treatment during the pandemic period is warranted.Competing Interest StatementLS acknowledges funding from the Carlsberg Foundation, grant number CF20-0046. LS and CLH acknowledge funding from Danish National Research Foundation (grant number DNRF170) for the PandemiX Center of Excellence. CLH has received contract-based hourly consulting fees from Sanofi outside of the submitted work.Funding StatementThis study was funded in part by the Danish National Research Foundation (grant number DNRF170) for the PandemiX Center of Excellence.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesIndividual-level mortality data were obtained from the National Center for Healthcare Statistics. These data are not publicly available due to privacy concerns, but descriptive characteristics have been summarized in Table 1 and Appendix - Table 1. The excess mortality models in this paper use mortality data aggregated by week and US state. These data, along with the model code, have been posted to the following public GitHub repository: https://github.com/chelsea-hansen/Disentangling-the-relationship-between-cancer-mortality-and-COVID-19 Additional weekly, aggregated mortality data are publicly available through CDC Wonder. Data used for the demographic model, along with the code have also been posted to the GitHub repository. Weekly, state-level data on recorded COVID-19 cases and deaths are publicly available. Data were downloaded from here: https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp and have also been posted as a .csv file to the GitHub repository referenced above. https://github.com/chelsea-hansen/Disentangling-the-relationship-between-cancer-mortality-and-COVID-19