PT - JOURNAL ARTICLE AU - Omar, Mahmud AU - Levkovich, Inbar TI - Exploring the Efficacy and Potential of Large Language Models for Depression: A Systematic Review AID - 10.1101/2024.05.07.24306897 DP - 2024 Jan 01 TA - medRxiv PG - 2024.05.07.24306897 4099 - http://medrxiv.org/content/early/2024/05/07/2024.05.07.24306897.short 4100 - http://medrxiv.org/content/early/2024/05/07/2024.05.07.24306897.full AB - Background and Objective Depression is a substantial public health issue, with global ramifications. While initial literature reviews explored the intersection between artificial intelligence (AI) and mental health, they have not yet critically assessed the specific contributions of Large Language Models (LLMs) in this domain. The objective of this systematic review was to examine the usefulness of LLMs in diagnosing and managing depression, as well as to investigate their incorporation into clinical practice.Methods This review was based on a thorough search of the PubMed, Embase, Web of Science, and Scopus databases for the period January 2018 through March 2024. The search used PROSPERO and adhered to PRISMA guidelines. Original research articles, preprints, and conference papers were included, while non-English and non-research publications were excluded. Data extraction was standardized, and the risk of bias was evaluated using the ROBINS-I, QUADAS-2, and PROBAST tools.Results Our review included 34 studies that focused on the application of LLMs in detecting and classifying depression through clinical data and social media texts. LLMs such as RoBERTa and BERT demonstrated high effectiveness, particularly in early detection and symptom classification. Nevertheless, the integration of LLMs into clinical practice is in its nascent stage, with ongoing concerns about data privacy and ethical implications.Conclusion LLMs exhibit significant potential for transforming strategies for diagnosing and treating depression. Nonetheless, full integration of LLMs into clinical practice requires rigorous testing, ethical considerations, and enhanced privacy measures to ensure their safe and effective use.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any funding Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present work are contained in the manuscript