RT Journal Article SR Electronic T1 Predictive mathematical models for the number of individuals infected with COVID-19 JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.05.02.20088591 DO 10.1101/2020.05.02.20088591 A1 Fokas, A.S. A1 Dikaios, N. A1 Kastis, G.A. YR 2020 UL http://medrxiv.org/content/early/2020/05/06/2020.05.02.20088591.abstract AB We model the time-evolution of the number N(t) of individuals reported to be infected in a given country with a specific virus, in terms of a Riccati equation. Although this equation is nonlinear and it contains time-dependent coefficients, it can be solved in closed form, yielding an expression for N(t) that depends on a function α(t). For the particular case that α(t) is constant, this expression reduces to the well-known logistic formula, giving rise to a sigmoidal curve suitable for modelling usual epidemics. However, for the case of the COVID-19 pandemic, the long series of available data shows that the use of this simple formula for predictions underestimates N(t); thus, the logistic formula only provides a lower bound of N(t). After experimenting with more than 50 different forms of α(t), we introduce two novel models that will be referred to as “rational” and “birational”. The parameters specifying these models (as well as those of the logistic model), are determined from the available data using an error-minimizing algorithm. The analysis of the applicability of the above models to the cases of China and South Korea suggest that they yield more accurate predictions, and importantly that they may provide an upper bound of the actual N(t). Results are presented for Italy, Spain, and France.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesWe obtained the time-series data for the Coronavirus Disease (COVID-19) for China, South Korea, France, Spain, and Italy from the official site of the European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases