RT Journal Article SR Electronic T1 COVID-19 length of hospital stay: a systematic review and data synthesis JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.04.30.20084780 DO 10.1101/2020.04.30.20084780 A1 Rees, Eleanor M A1 Nightingale, Emily S A1 Jafari, Yalda A1 Waterlow, Naomi R A1 Clifford, Samuel A1 Pearson, Carl A B A1 , A1 Jombart, Thibaut A1 Procter, Simon R A1 Knight, Gwenan M YR 2020 UL http://medrxiv.org/content/early/2020/05/05/2020.04.30.20084780.abstract AB Background The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care.Methods We performed a systematic review to gather data on length of stay (LoS) of patients with COVID-19 in hospital and in ICU. We subsequently developed a method to generate LoS distributions which combines summary statistics reported in multiple studies, accounting for differences in sample sizes. Applying this approach we provide distributions for general hospital and ICU LoS from studies in China and elsewhere, for use by the community.Results We identified 52 studies, the majority from China (46/52). Median hospital LoS ranged from 4 to 53 days within China, and 4 to 21 days outside of China, across 45 studies. ICU LoS was reported by eight studies - four each within and outside China - with median values ranging from 6 to 12 and 4 to 19 days, respectively. Our summary distributions have a median hospital LoS of 14 (IQR: 10–19) days for China, compared with 5 (IQR: 3–9) days outside of China. For ICU, the summary distributions are more similar (median (IQR) of 8 (5–13) days for China and 7 (4–11) days outside of China). There was a visible difference by discharge status, with patients who were discharged alive having longer LoS than those who died during their admission, but no trend associated with study date.Conclusion Patients with COVID-19 in China appeared to remain in hospital for longer than elsewhere. This may be explained by differences in criteria for admission and discharge between countries, and different timing within the pandemic. In the absence of local data, the combined summary LoS distributions provided here can be used to model bed demands for contingency planning and then updated, with the novel method presented here, as more studies with aggregated statistics emerge outside China.Competing Interest StatementThe authors have declared no competing interest.Funding StatementEMR receives funding from the Medical Research Council London Intercollegiate Doctoral Training Program (MR/N013638/1). ESN receives funding from the Bill and Melinda Gates Foundation via the SPEAK India Consortium (OPP1183986). YJ receives funding from XXXX. NRW wreceives funding from the UK Medical Research Council (MR/N013638/1). SC receives funding from the Wellcome Trust (208812/Z/17/Z). TJ receives funding from the UK Public Health Rapid Support Team, NIHR Health Protection Research Unit for Modelling Methodology (HPRU-2012-10096), and the UK Economic and Social Rsearch Council (ES/P010873/1). SRP receives funding from the Bill and Melinda Gates Foundation (OPP1180644). GMK receives funding from the UK Medical Research Council (MR/P014658/1).Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data extracted in this review and code used to analyse them are available via a github repository (https://github.com/esnightingale/los_review). https://github.com/esnightingale/los_review