RT Journal Article SR Electronic T1 A simulation of a COVID-19 epidemic based on a deterministic SEIR model JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.04.20.20072272 DO 10.1101/2020.04.20.20072272 A1 Carcione, José M. A1 Santos, Juan E. A1 Bagaini, Claudio A1 Ba, Jing YR 2020 UL http://medrxiv.org/content/early/2020/05/03/2020.04.20.20072272.abstract AB An epidemic disease caused by a new coronavirus has spread in Northern Italy with a strong contagion rate. We implement an SEIR model to compute the infected population and number of casualties of this epidemic. The example may ideally regard the situation in the Italian Region of Lombardy, where the epidemic started on February 24, but by no means attempts to perform a rigorous case study in view of the lack of suitable data and uncertainty of the different parameters, namely, the variation of the degree of home isolation and social distancing as a function of time, the number of initially exposed individuals and infected people, the incubation and infectious periods and the fatality rate.First, we perform an analysis of the results of the model, by varying the parameters and initial conditions (in order the epidemic to start, there should be at least one exposed or one infectious human). Then, we consider the Lombardy case and calibrate the model with the number of dead individuals to date (April 28, 2020) and constraint the parameters on the basis of values reported in the literature. The peak occurs at day 37 (March 31) approximately, when there is a rapid decrease, with a reproduction ratio R0 = 3 initially, 1.36 at day 22 and 0.78 after day 35, indicating different degrees of lockdown. The predicted death toll is almost 15325 casualties, with 2.64 million infected individuals at the end of the epidemic. The incubation period providing a better fit of the dead individuals is 4.25 days and the infectious period is 4 days, with a fatality rate of 0.00144/day [values based on the reported (official) number of casualties]. The infection fatality rate (IFR) is 0.57 %, and 2.36 % if twice the reported number of casualties is assumed. However, these rates depend on the initially exposed individuals. If approximately nine times more individuals are exposed, there are three times more infected people at the end of the epidemic and IFR = 0.47 %. If we relax these constraints and use a wider range of lower and upper bounds for the incubation and infectious periods, we observe that a higher incubation period (13 versus 4.25 days) gives the same IFR (0.6 % versus 0.57 %), but nine times more exposed individuals in the first case. Other choices of the set of parameters also provide a good fit of the data, but some of the results may not be realistic. Therefore, an accurate determination of the fatality rate and characteristics of the epidemic is subject to the knowledge of precise bounds of the parameters.Besides the specific example, the analysis proposed in this work shows how isolation measures, social distancing and knowledge of the diffusion conditions help us to understand the dynamics of the epidemic. Hence, the importance to quantify the process to verify the effectiveness of the lockdown.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThere is no fundingAuthor DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data is made available by the Italian state