RT Journal Article SR Electronic T1 Peripheral neural synchrony in post-lingually deafened adult cochlear implant users JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.07.07.23292369 DO 10.1101/2023.07.07.23292369 A1 He, Shuman A1 Skidmore, Jeffrey A1 Bruce, Ian C. A1 Oleson, Jacob J. A1 Yuan, Yi YR 2024 UL http://medrxiv.org/content/early/2024/02/16/2023.07.07.23292369.abstract AB Objective This paper reports a noninvasive method for quantifying neural synchrony in the cochlear nerve (i.e., peripheral neural synchrony) in cochlear implant (CI) users, which allows for evaluating this physiological phenomenon in human CI users for the first time in the literature. In addition, this study assessed how peripheral neural synchrony was correlated with temporal resolution acuity and speech perception outcomes measured in quiet and in noise in post-lingually deafened adult CI users. It tested the hypothesis that peripheral neural synchrony was an important factor for temporal resolution acuity and speech perception outcomes in noise in post-lingually deafened adult CI users.Design Study participants included 24 post-lingually deafened adult CI users with a Cochlear™ Nucleus® device. Three study participants were implanted bilaterally, and each ear was tested separately. For each of the 27 implanted ears tested in this study, 400 sweeps of the electrically evoked compound action potential (eCAP) were measured at four electrode locations across the electrode array. Peripheral neural synchrony was quantified at each electrode location using the phase locking value (PLV), which is a measure of trial-by-trial phase coherence among eCAP sweeps/trials. Temporal resolution acuity was evaluated by measuring the within-channel gap detection threshold (GDT) using a three-alternative, forced-choice procedure in a subgroup of 20 participants (23 implanted ears). For each ear tested in these participants, GDTs were measured at two electrode locations with a large difference in PLVs. For 26 implanted ears tested in 23 participants, speech perception performance was evaluated using Consonant-Nucleus-Consonant (CNC) word lists presented in quiet and in noise at signal-to-noise ratios (SNRs) of +10 and +5 dB. Linear Mixed effect Models were used to evaluate the effect of electrode location on the PLV and the effect of the PLV on GDT after controlling for the stimulation level effects. Pearson product-moment correlation tests were used to assess the correlations between PLVs, CNC word scores measured in different conditions, and the degree of noise effect on CNC word scores.Results There was a significant effect of electrode location on the PLV after controlling for the effect of stimulation level. There was a significant effect of the PLV on GDT after controlling for the effects of stimulation level, where higher PLVs (greater synchrony) led to lower GDTs (better temporal resolution acuity). PLVs were not significantly correlated with CNC word scores measured in any listening condition or the effect of competing background noise presented at a SNR of +10 dB on CNC word scores. In contrast, there was a significant negative correlation between the PLV and the degree of noise effect on CNC word scores for a competing background noise presented at a SNR of +5 dB, where higher PLVs (greater synchrony) correlated with smaller noise effects on CNC word scores.Conclusions This newly developed method can be used to assess peripheral neural synchrony in CI users, a physiological phenomenon that has not been systematically evaluated in electrical hearing. Poorer peripheral neural synchrony leads to lower temporal resolution acuity and is correlated with a larger detrimental effect of competing background noise presented at a SNR of 5 dB on speech perception performance in post-lingually deafened adult CI users.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by grants from the National Institutes of Health awarded to SH [grant numbers 1R01 DC016038, 1R01 DC017846, R21 DC019458] and a NSERC Discovery Grant awarded to ICB [grant number RGPIN-2018-05778].Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The Biomedical Institutional Review Board of The Ohio State University gave ethical approval for this work (2017H0131).I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesPlease contact the corresponding author to discuss access to the data presented in this study.