RT Journal Article SR Electronic T1 Unifying human infectious disease models and real-time awareness of population- and subpopulation-level intervention effectiveness JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2024.01.17.24301344 DO 10.1101/2024.01.17.24301344 A1 Seibel, Rachel L. A1 Tildesley, Michael J. A1 Hill, Edward M. YR 2024 UL http://medrxiv.org/content/early/2024/01/17/2024.01.17.24301344.abstract AB Background During infectious disease outbreaks, humans often base their decision to adhere to an intervention strategy on their personal opinion towards the intervention, perceived risk of infection and intervention effectiveness. However, due to data limitations and inference challenges, infectious disease models usually omit variables that may impact an individual’s decision to get vaccinated and their awareness of the intervention’s effectiveness of disease control within their social contacts as well as the overall population.Methods We constructed a compartmental, deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) disease model that includes a behavioural function with parameters influencing intervention uptake. The behavioural function accounted for an initial subpopulation opinion towards an intervention, their outbreak information sensitivity and the extent they are swayed by the real-time intervention effectiveness information (at a subpopulation- and population-level). Applying the model to vaccination uptake and three human pathogens - pandemic influenza, SARS-CoV-2 and Ebola virus - we explored through model simulation how these intervention adherence decision parameters and behavioural heterogeneity in the population impacted epidemiological outcomes.Results From our model simulations we found that differences in preference towards outbreak information were pathogen-specific. Therefore, in some pathogen systems, outbreak information types at different outbreak stages may be more informative to an information-sensitive population and lead to less severe epidemic outcomes. In both behaviourally-homogeneous and behaviourally-heterogeneous populations, pandemic influenza showed patterns distinct from SARS-CoV-2 and Ebola for cumulative epidemiological metrics of interest. Furthermore, there was notable sensitivity in outbreak size under different assumptions regarding the population split in behavioural traits. Outbreak information preference was sensitive to vaccine efficacy, which demonstrates the importance of considering human behaviour during outbreaks in the context of the perceived effectiveness of the intervention.Implications Incorporating behavioural functions that modify infection control intervention adherence into epidemiological models can aid our understanding of adherence dynamics during outbreaks. Ultimately, by parameterising models with what we know about human behaviour towards vaccination (and other infection control interventions) adherence, such models can help assist decision makers during outbreaks. Such progress will be particularly important for emerging infectious diseases when there is initially little information on the disease dynamics and intervention effectiveness.Competing Interest StatementThe authors have declared no competing interest.Funding StatementRLS and MJT were supported by the Engineering and Physical Sciences Research Council through the MathSys CDT (grant number EP/S022244/1). MJT and EMH are linked with the JUNIPER partnership (MRC grant no MR/X018598/1) and would like to acknowledge their help and support.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.Yes