RT Journal Article SR Electronic T1 Human Mobility Restrictions and the Spread of the Novel Coronavirus (2019-nCoV) in China JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.03.24.20042424 DO 10.1101/2020.03.24.20042424 A1 Fang, Hanming A1 Wang, Long A1 Yang, Yang YR 2020 UL http://medrxiv.org/content/early/2020/03/26/2020.03.24.20042424.abstract AB We quantify the causal impact of human mobility restrictions, particularly the lockdown of the city of Wuhan on January 23, 2020, on the containment and delay of the spread of the Novel Coronavirus (2019-nCoV). We employ a set of difference-in-differences (DID) estimations to disentangle the lockdown effect on human mobility reductions from other confounding effects including panic effect, virus effect, and the Spring Festival effect. We find that the lockdown of Wuhan reduced inflow into Wuhan by 76.64%, outflows from Wuhan by 56.35%, and within-Wuhan movements by 54.15%. We also estimate the dynamic effects of up to 22 lagged population inflows from Wuhan and other Hubei cities, the epicenter of the 2019-nCoV outbreak, on the destination cities’ new infection cases. We find, using simulations with these estimates, that the lockdown of the city of Wuhan on January 23, 2020 contributed significantly to reducing the total infection cases outside of Wuhan, even with the social distancing measures later imposed by other cities. We find that the COVID-19 cases would be 64.81% higher in the 347 Chinese cities outside Hubei province, and 52.64% higher in the 16 non-Wuhan cities inside Hubei, in the counterfactual world in which the city of Wuhan were not locked down from January 23, 2020. We also find that there were substantial undocumented infection cases in the early days of the 2019-nCoV outbreak in Wuhan and other cities of Hubei province, but over time, the gap between the officially reported cases and our estimated “actual” cases narrows significantly. We also find evidence that enhanced social distancing policies in the 63 Chinese cities outside Hubei province are effective in reducing the impact of population inflows from the epi-center cities in Hubei province on the spread of 2019-nCoV virus in the destination cities elsewhere.JEL Codes I18, I10.Competing Interest StatementThe authors have declared no competing interest.Funding StatementN/AAuthor DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesWe obtain inter-city population migration data from Baidu Migration, a travel map offered by the largest Chinese search engine, Baidu (http://qianxi.baidu.com/); COVID-19 daily case counts are collected from China CDC, which provides daily updates on confirmed, dead, and recovered COVID-19 cases in each cityFrom January 11 to February 29, 2020 (http://2019nCoV.chinacdc.cn/2019-nCoV/)