RT Journal Article SR Electronic T1 Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.11.30.23299218 DO 10.1101/2023.11.30.23299218 A1 Sun, Rui A1 Sohrabpour, Abbas A1 Joseph, Boney A1 Worrell, Gregory A1 He, Bin YR 2023 UL http://medrxiv.org/content/early/2023/12/01/2023.11.30.23299218.abstract AB Noninvasive dynamic brain imaging of neural oscillations provides valuable insights into both physiological and pathological brain states. Yet, challenges remain due to the ill-posed nature of the problem and high complexity of the solution space, which can be alleviated by advanced computational models. Here, we investigated the capability of a novel deep learning-based source imaging framework (DeepSIF) for imaging ictal activities from high-density electroencephalogram (EEG) recordings in drug-resistant focal epilepsy patients. The neural mass model of ictal oscillations was adopted to generate synthetic training data with spatio-temporal-spectra features similar to ictal dynamics. We rigorously validated the trained DeepSIF model using computer simulations and in a cohort of 33 drug-resistant focal epilepsy patients. The DeepSIF ictal source imaging was compared with interictal source imaging and three conventional imaging methods as benchmark comparisons. Our findings show that the trained DeepSIF model outperforms other methods in estimating the spatial and temporal information of ictal sources. It achieves a high spatial specificity of 96% and a low spatial dispersion of 3.80 ± 5.74 mm when compared to the resection region. The noninvasive source imaging results also demonstrate good coverage of seizure-onset-zone (SOZ), with an average distance of 10.89 ± 10.14 mm (from the SOZ to the reconstruction). These promising results suggest that DeepSIF has significant potential for advancing noninvasive imaging of ictal activities in patients with focal epilepsy. By providing valuable insights into the spatiotemporal dynamics of seizure activity, DeepSIF promises to help guide clinical decisions and improve treatment outcomes for epilepsy patients.Competing Interest StatementB.H., R.S. and A.S. are co-inventors of a pending patent application on a technique used in this work.Funding StatementThis work was supported in part by National Institutes of Health grants NS127849 and NS096761, and by a gift from the Pittsburgh Health Data Alliance.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was conducted according to a protocol approved by the Institutional Review Board of Carnegie Mellon University.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present work are contained in the manuscript and supplementary information.