PT - JOURNAL ARTICLE AU - Zhou, Yadi AU - Hou, Yuan AU - Shen, Jiayu AU - Huang, Yin AU - Martin, William AU - Cheng, Feixiong TI - Network-based Drug Repurposing for Human Coronavirus AID - 10.1101/2020.02.03.20020263 DP - 2020 Jan 01 TA - medRxiv PG - 2020.02.03.20020263 4099 - http://medrxiv.org/content/early/2020/02/05/2020.02.03.20020263.short 4100 - http://medrxiv.org/content/early/2020/02/05/2020.02.03.20020263.full AB - Human Coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle east respiratory syndrome coronavirus (MERS-CoV), and 2019 novel coronavirus (2019-nCoV), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV. Drug repurposing, represented as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV has the highest nucleotide sequence identity with SARS-CoV (79.7%) among the six other known pathogenic HCoVs. Specifically, the envelope and nucleocapsid proteins of 2019-nCoV are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and known HCoV-host interactions in the human protein-protein interactome, we computationally identified 135 putative repurposable drugs for the potential prevention and treatment of HCoVs. In addition, we prioritized 16 potential anti-HCoV repurposable drugs (including melatonin, mercaptopurine, and sirolimus) that were further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. Finally, we showcased three potential drug combinations (including sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the ‘Complementary Exposure’ pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human protein-protein interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations toward future clinical trials for HCoVs.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNAAuthor DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll codes and predicted repurposable drugs can be freely accessed at: https://github.com/ChengF-Lab/2019-nCoV https://github.com/ChengF-Lab/2019-nCoV