RT Journal Article SR Electronic T1 Tumor-Specific Decisions Using Tumor-Agnostic Evidence from Basket Trials: A Bayesian Hierarchical Approach JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.09.19.23295807 DO 10.1101/2023.09.19.23295807 A1 Chen, Yilin A1 Carlson, Josh J. A1 Montano-Campos, Felipe A1 Basu, Anirban A1 Inoue, Lurdes Y.T. YR 2023 UL http://medrxiv.org/content/early/2023/09/21/2023.09.19.23295807.abstract AB Purpose Treatment effect heterogeneity across tumor types remains a challenge to evidence interpretation and implementation of tumor-agnostic drugs (TADs), which are typically approved based on basket trial evidence. We sought to use Bayesian hierarchical models (BHM) to assess heterogeneity and improve estimates of tumor-specific treatment outcomes, which are crucial for healthcare decision-making.Methods We fitted BHMs and Bayesian fixed-effect models to evaluate the objective response rate (ORR), the median progression-free survival (mPFS), and the overall survival (mOS). We estimated the posterior distribution of outcomes for each tumor type, the pooled effects, and intra-class correlations (ICC). Using published basket trial evidence for pembrolizumab (KEYNOTE-158/KEYNOTE-164), we obtained the predictive outcomes in a new cancer type drawn from the same population. In the base case, we assumed non-informative priors with uniform distributions for between-tumor standard deviation. We performed sensitivity analyses with various priors to account for uncertainty in the prior specification.Results The BHMs shrunk the original tumor-specific estimates toward a pooled treatment effect. The borrowing of information across tumor types resulted in less variability in the posterior tumor-specific estimates compared to the original trial estimates, reflected in narrower 95% credible intervals (CrLs). We found low heterogeneity for ORR but high heterogeneity for mPFS and mOS across cancers (ICC: 0.22, 0.87, 0.7). The predicted posterior means and 95%CrLs were 0.37 (0.15-0.64) for ORR, 3.75 months (0.24-50.45) for mPFS, and 13.76 months (0.42-276.49) for mOS, respectively.Conclusions Borrowing information through BHM can improve the precision of tumor-specific estimates, thereby facilitating more robust policy decisions regarding TADs. Our analysis revealed high heterogeneity and uncertainty in survival endpoints. Both pooled and tumor-specific estimates are informative for clinical and coverage decision making.HighlightsBayesian hierarchical models could enhance precision and reduce uncertainty of estimates derived from basket trial evidence, potentially improving confidence in tumor-agnostic decision making, despite small sample sizes in some tumor types.Our study highlights high variability in treatment effects of pembrolizumab across tumor types with respect to survival endpoints, although treatment effects appear more consistent when judged by objective response rate at approval. Understanding heterogeneity in treatment effects following accelerated approvals based on surrogate endpoint is crucial for clinical and coverage decision making.This article demonstrates the use of Bayesian methods to estimate posterior distributions of tumor-specific and aggregated treatment effects (ORR, median PFS, and median OS) from basket trials. Choosing between fixed-effect or random-effects model to evaluate pooled treatment effects depends on the level of heterogeneity in effect sizes across tumor types.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present work are contained in the manuscript