RT Journal Article SR Electronic T1 An Interpretable Longitudinal Preeclampsia Risk Prediction Using Machine Learning JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.08.16.23293946 DO 10.1101/2023.08.16.23293946 A1 Eberhard, Braden W A1 Cohen, Raphael Y A1 Rigoni, John A1 Bates, David W A1 Gray, Kathryn J A1 Kovacheva, Vesela P YR 2023 UL http://medrxiv.org/content/early/2023/08/16/2023.08.16.23293946.abstract AB Background Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension after 20 weeks of gestation that affects 2-8% of all pregnancies and contributes to up to 26% of maternal deaths. Despite extensive clinical research, current predictive tools fail to identify up to 66% of patients who will develop preeclampsia. We sought to develop a tool to longitudinally predict preeclampsia risk.Methods In this retrospective model development and validation study, we examined a large cohort of patients who delivered at six community and two tertiary care hospitals in the New England region between 02/2015 and 06/2023. We used sociodemographic, clinical diagnoses, family history, laboratory, and vital signs data. We developed eight datasets at 14, 20, 24, 28, 32, 36, 39 weeks gestation and at the hospital admission for delivery. We created linear regression, random forest, xgboost, and deep neural networks to develop multiple models and compared their performance. We used Shapley values to investigate the global and local explainability of the models and the relationships between the predictive variables.Findings Our study population (N=120,752) had an incidence of preeclampsia of 5.7% (N=6,920). The performance of the models as measured using the area under the curve, AUC, was in the range 0.73-0.91, which was externally validated. The relationships between some of the variables were complex and non-linear; in addition, the relative significance of the predictors varied over the pregnancy. Compared to the current standard of care for preeclampsia risk stratification in the first trimester, our model would allow 48.6% more at-risk patients to be identified.Interpretation Our novel preeclampsia prediction tool would allow clinicians to identify patients at risk early and provide personalized predictions, as well as longitudinal predictions throughout pregnancy.Funding National Institutes of Health, Anesthesia Patient Safety Foundation.Evidence before this study Current tools for the prediction of preeclampsia are lacking as they fail to identify up to 66% of the patients who develop preeclampsia. We searched PubMed, MEDLINE, and the Web of Science from database inception to May 1, 2023, using the keywords “deep learning”, “machine learning”, “preeclampsia”, “artificial intelligence”, “pregnancy complications”, and “predictive models”. We identified 13 studies that employed machine learning to develop prediction models for preeclampsia risk based on clinical variables. Among these studies, six included biomarkers such as serum placental growth factor, pregnancy-associated plasma protein A, and uterine artery pulsatility index, which are not routinely available in our clinical practice; two studies were in diverse cohorts of more than 100 000 patients, and two studies developed longitudinal predictions using medical records data. However, most studies have limited depth, concerns about data leakage, overfitting, or lack of generalizability.Added value of this study We developed a comprehensive longitudinal predictive tool based on routine clinical data that can be used throughout pregnancy to predict the risk of preeclampsia. We tested multiple types of predictive models, including machine learning and deep learning models, and demonstrated high predictive power. We investigated the changes over different time points of individual and group variables and found previously known and novel relationships between variables such as red blood cell count and preeclampsia risk.Implications of all the available evidence Longitudinal prediction of preeclampsia using machine learning can be achieved with high performance. Implementation of an accurate predictive tool within the electronic health records can aid clinical care and identify patients at heightened risk who would benefit from aspirin prophylaxis, increased surveillance, early diagnosis, and escalation in care. These results highlight the potential of using artificial intelligence in clinical decision support, with the ultimate goal of reducing iatrogenic preterm birth and improving perinatal care.Competing Interest StatementKJG has served as a consultant to Illumina Inc., Aetion, Roche, and BillionToOne outside the scope of the submitted work. DWB reports grants and personal fees from EarlySense, personal fees from CDI Negev, equity from Valera Health, equity from CLEW, equity from MDClone, personal fees and equity from AESOP Technology, personal fees and equity from FeelBetter, and grants from IBM Watson Health, outside the submitted work. VPK reports consulting fees from Avania CRO unrelated to the current work.Funding StatementKJG reports funding from NIH/NHLBI grants K08 HL146963, K08 HL146963-02S1, and R03 HL162756. VPK reports funding from the NIH/NHLBI grants 1K08HL161326-01A1, Anesthesia Patient Safety Foundation (APSF), and BWH IGNITE Award. The funders played no role in the study design, data collection, analysis, and interpretation of data, or the writing of this manuscript. Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was approved by the Mass General Brigham Institutional Review Board, protocol # 2020P002859, with a waiver of patient consent.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThe data used in this study are from Mass General Brigham patients and are not publicly available due to patient privacy and confidentiality.AUCarea under the receiver operating characteristic curveBMIbody mass indexDBPdiastolic blood pressureIUGRintrauterine growth restrictionSBPsystolic blood pressureSGAsmall for gestational ageXGBxgboost