RT Journal Article SR Electronic T1 The multi-dimensional challenges of controlling respiratory virus transmission in indoor spaces: Insights from the linkage of a microscopic pedestrian simulation and SARS-CoV-2 transmission model JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.04.12.21255349 DO 10.1101/2021.04.12.21255349 A1 Atamer Balkan, Busra A1 Chang, You A1 Sparnaaij, Martijn A1 Wouda, Berend A1 Boschma, Doris A1 Liu, Yangfan A1 Yuan, Yufei A1 Daamen, Winnie A1 de Jong, Mart C.M. A1 Teberg, Colin A1 Schachtschneider, Kevin A1 Sikkema, Reina S. A1 van Veen, Linda A1 Duives, Dorine A1 ten Bosch, Quirine A. YR 2023 UL http://medrxiv.org/content/early/2023/07/21/2021.04.12.21255349.abstract AB SARS-CoV-2 transmission in indoor spaces, where most infection events occur, depends on the types and duration of human interactions, among others. Understanding how these human behaviours interface with virus characteristics to drive pathogen transmission and dictate the outcomes of non-pharmaceutical interventions is important for the informed and safe use of indoor spaces. To better understand these complex interactions, we developed the Pedestrian Dynamics - Virus Spread model (PeDViS): an individual-based model that combines pedestrian behaviour models with virus spread models that incorporate direct and indirect transmission routes. We explored the relationships between virus exposure and the duration, distance, respiratory behaviour, and environment in which interactions between infected and uninfected individuals took place, and compared this to benchmark ‘at risk’ interactions (1.5 metres for 15 minutes). When considering aerosol transmission, individuals adhering to distancing measures may be at risk due to build-up of airborne virus in the environment when infected individuals spend prolonged time indoors. In our restaurant case, guests seated at tables near infected individuals were at limited risk of infection but could, particularly in poorly ventilated places, experience risks that surpass that of benchmark interactions. Combining interventions that target different transmission routes can aid in accumulating impact, for instance by combining ventilation with face masks. The impact of such combined interventions depends on the relative importance of transmission routes, which is hard to disentangle and highly context dependent. This uncertainty should be considered when assessing transmission risks upon different types of human interactions in indoor spaces. We illustrated the multi-dimensionality of indoor SARS-CoV-2 transmission that emerges from the interplay of human behaviour and the spread of respiratory viruses. A modelling strategy that incorporates this in risk assessments can help inform policy makers and citizens on the safe use of indoor spaces with varying inter-human interactions.SUMMARY With most infections happening indoors, indoor spaces played an important role in the spread and control of SARS-CoV-2. Indoor transmission and the impact of interventions targeted at these spaces are hard to predict due to the interplay of diverse inter-human interactions, host factors, virus characterisitics, and the local environment. Mathematical models can help disentangle such complex processes. Here, we introduce a model that simulates viral spread in indoor spaces by combining models on detailed human movements and interactions with models that simulate the spread and uptake of viruses through direct and indirect transmission routes. We use a restaurant-setting as a case-study and illustrate that, while common distancing measures hold for infection prevention during relatively short interactions, transmission may occur over longer distances if infected individuals spend more time in a space, particularly if poorly ventilated. The effects of intervention measures are tightly coupled to the transmission route they target and the relative importance of this route in a specific scenario. Uncertainty around the latter should be considered when assessing transmission risks. The model can be adapted to different settings, interventions, levels of population immune protection, and to other virus variants and respiratory pathogens. It can help guide decision making on effective mitigation of virus transmission in indoor spaces.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis publication is part of the project SamenSlimOpen (with project number 10430022010018 of the research programme COVID-19 Programma, which is financed by the Dutch Research Council (NWO) and ZonMw.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:not applicableI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll code will be made available at the time of publication.