PT - JOURNAL ARTICLE AU - Kılıç, Mustafa Eray TI - AI in Medical Education: A Comparative Analysis of GPT-4 and GPT-3.5 on Turkish Medical Specialization Exam Performance AID - 10.1101/2023.07.12.23292564 DP - 2023 Jan 01 TA - medRxiv PG - 2023.07.12.23292564 4099 - http://medrxiv.org/content/early/2023/07/12/2023.07.12.23292564.short 4100 - http://medrxiv.org/content/early/2023/07/12/2023.07.12.23292564.full AB - Background/aim Large-scale language models (LLMs), such as GPT-4 and GPT-3.5, have demonstrated remarkable potential in the rapidly developing field of artificial intelligence (AI) in education. The use of these models in medical education, especially their effectiveness in situations such as the Turkish Medical Specialty Examination (TUS), is yet understudied. This study evaluates how well GPT-4 and GPT-3.5 respond to TUS questions, providing important insight into the real-world uses and difficulties of AI in medical education.Materials and methods In the study, 1440 medical questions were examined using data from six Turkish Medical Specialties examinations. GPT-4 and GPT-3.5 AI models were utilized to provide answers, and IBM SPSS 26.0 software was used for data analysis. For advanced enquiries, correlation analysis and regression analysis were used.Results GPT-4 demonstrated a better overall success rate (70.56%) than GPT-3.5 (40.17%) and physicians (38.14%) in this study examining the competency of GPT-4 and GPT-3.5 in answering questions from the Turkish Medical Specialization Exam (TUS). Notably, GPT-4 delivered more accurate answers and made fewer errors than GPT-3.5, yet the two models skipped about the same number of questions. Compared to physicians, GPT-4 produced more accurate answers and a better overall score. In terms of the number of accurate responses, GPT-3.5 performed slightly better than physicians. Between GPT-4 and GPT-3.5, GPT-4 and the doctors, and GPT-3.5 and the doctors, the success rates varied dramatically. Performance ratios differed across domains, with doctors outperforming AI in tests involving anatomy, whereas AI models performed best in tests involving pharmacology.Conclusions In this study, GPT-4 and GPT-3.5 AI models showed superior performance in answering Turkish Medical Specialization Exam questions. Despite their abilities, these models demonstrated limitations in reasoning beyond given knowledge, particularly in anatomy. The study recommends adding AI support to medical education to enhance the critical interaction with these technologies.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThe data that support the findings of this study are available from the corresponding author, upon reasonable request.