RT Journal Article SR Electronic T1 What can be learned from viral co-detection studies in human populations JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.06.17.23291541 DO 10.1101/2023.06.17.23291541 A1 Chin, Taylor A1 Foxman, Ellen F. A1 Watkins, Timothy A. A1 Lipsitch, Marc YR 2023 UL http://medrxiv.org/content/early/2023/06/18/2023.06.17.23291541.abstract AB When respiratory viruses co-circulate in a population, individuals may be infected with multiple pathogens and experience possible virus-virus interactions, where concurrent or recent prior infection with one virus affects the infection process of another virus. While experimental studies have provided convincing evidence for within-host mechanisms of virus-virus interactions, evaluating evidence for viral interference or potentiation using population-level data has proven more difficult. Recent studies have quantified the prevalence of co-detections using populations drawn from clinical settings. Here, we focus on selection bias issues associated with this study design. We provide a quantitative account of the conditions under which selection bias arises in these studies, review previous attempts to address this bias, and propose unbiased study designs with sample size estimates needed to ascertain viral interference. We show that selection bias is expected in cross-sectional co-detection prevalence studies conducted in clinical settings, except under a strict set of assumptions regarding the relative probabilities of having symptoms under different viral states. Population-wide studies that sample participants irrespective of their symptom status would meanwhile require large sample sizes to be sufficiently powered to detect viral interference, suggesting that a study’s timing, inclusion criteria, and the expected magnitude of interference are instrumental in determining feasibility.Competing Interest StatementThe authors have declared no competing interest.Funding StatementT.C. was supported by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) (grant 2T32AI007535). E.F.F. received support from the Rita Allen Foundation. T.A.W. was supported by the NIH (grant T32AI007019). M.L. was supported by the SeroNet program of the National Cancer Institute (1U01CA261277).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present work are contained in the manuscript.