RT Journal Article SR Electronic T1 Aberrant brain-heart coupling is associated with the severity and prognosis of hypoxic-ischemic brain injury after cardiac arrest JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.03.13.23287230 DO 10.1101/2023.03.13.23287230 A1 Hermann, Bertrand A1 Candia-Rivera, Diego A1 Sharshar, Tarek A1 Gavaret, Martine A1 Diehl, Jean-Luc A1 Cariou, Alain A1 Benghanem, Sarah YR 2023 UL http://medrxiv.org/content/early/2023/03/19/2023.03.13.23287230.abstract AB Background and Objectives Approximately 50% of post-cardiac arrest survivors remain comatose after 72h, a substantial proportion of which will have a poor neurological outcome, predominantly due to irreversible hypoxic-ischemic brain injury. Recent findings in healthy subjects and patients suggested that autonomic nervous system activity measured by brain-heart interactions could be reliable markers of consciousness and cognitive processing. Thus, we hypothesized that brain-heart interactions are associated with the severity of hypoxic-ischemic brain injury and the prognosis of these patients.Methods In post-cardiac arrest patients still comatose 48h after sedation weaning, brain-heart interaction markers were computed on 5 minutes of continuous EEG/ECG recording using a synthetic data generation model, gathering bidirectional interactions between EEG frequency bands (delta, theta and alpha) and heart-rate variability frequency bands (low and high frequency). The strength and complexity of the interactions were quantified using medians and refined composite multiscale entropy. Primary outcome was the severity of brain injury, assessed by: (i) standardized qualitative EEG classification, (ii) somatosensory evoked potentials (N20), and (iii) neuron-specific enolase levels. Secondary outcome was the 3-month neurological status, assessed by the Cerebral Performance Category score [good (1-2) vs. poor outcome (3-4-5)].Results Between January 2007 and July 2021, 181 patients [116 males (64%), median age 61 years, age range 49-72 years] were admitted to ICU for a resuscitated cardiac arrest (76% out-of-hospital, 69% non-shockable rhythm). Poor neurological outcome was observed in 134 patients (74%). Qualitative EEG patterns suggesting high severity were associated with a decreased sympatho-vagal balance. Severity of EEG changes were proportional to higher absolute values of brain-to-heart coupling strength (p<2×10−3 for all brain-to-heart frequencies) and lower values of complexity (all p-values<0.05 except for alpha-to-low frequency). Brain-to-heart coupling strength was significantly higher in patients with bilateral absent N20 and correlated with neuron-specific enolase levels at day 3. This aberrant brain-to-heart coupling (increased strength, decreased complexity) was also associated with 3-month poor neurological outcome.Discussion Our results suggest that autonomic dysfunctions may well represent hypoxic-ischemic brain injury post-cardiac arrest pathophysiology. These results open avenues for integrative monitoring of autonomic functioning in critical care patients with potential prognostic applications.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo funding was received towards this work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Data collection was approved by the Ethics Committee of the French Intensive Care Society (#CESRLF_12-384 and 20-41) and conducted according to French health authorities' regulations (French Data Protection Authority #MR004_2209691).I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesClinical and neurophysiological data analyzed in the current study are available from the corresponding author upon reasonable request.