RT Journal Article SR Electronic T1 Development and Validation of a Machine Learning Wrist-worn Step Detection Algorithm with Deployment in the UK Biobank JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.02.20.23285750 DO 10.1101/2023.02.20.23285750 A1 Small, Scott R. A1 Chan, Shing A1 Walmsley, Rosemary A1 Fritsch, Lennart von A1 Acquah, Aidan A1 Mertes, Gert A1 Feakins, Benjamin G. A1 Creagh, Andrew A1 Strange, Adam A1 Matthews, Charles E. A1 Clifton, David A. A1 Price, Andrew J. A1 Khalid, Sara A1 Bennett, Derrick A1 Doherty, Aiden YR 2023 UL http://medrxiv.org/content/early/2023/02/22/2023.02.20.23285750.abstract AB Background Step count is an intuitive measure of physical activity frequently quantified in a range of health-related studies; however, accurate quantification of step count can be difficult in the free-living environment, with step counting error routinely above 20% in both consumer and research-grade wrist-worn devices. This study aims to describe the development and validation of step count derived from a wrist-worn accelerometer and to assess its association with cardiovascular and all-cause mortality in a large prospective cohort study.Methods We developed and externally validated a hybrid step detection model that involves self-supervised machine learning, trained on a new ground truth annotated, free-living step count dataset (OxWalk, n=39, aged 19-81) and tested against other open-source step counting algorithms. This model was applied to ascertain daily step counts from raw wrist-worn accelerometer data of 75,493 UK Biobank participants without a prior history of cardiovascular disease (CVD) or cancer. Cox regression was used to obtain hazard ratios and 95% confidence intervals for the association of daily step count with fatal CVD and all-cause mortality after adjustment for potential confounders.Findings The novel step algorithm demonstrated a mean absolute percent error of 12.5% in free-living validation, detecting 98.7% of true steps and substantially outperforming other recent wrist-worn, open-source algorithms. Our data are indicative of an inverse dose-response association, where, for example, taking 6,596 to 8,474 steps per day was associated with a 39% [24-52%] and 27% [16-36%] lower risk of fatal CVD and all-cause mortality, respectively, compared to those taking fewer steps each day.Interpretation An accurate measure of step count was ascertained using a machine learning pipeline that demonstrates state-of-the-art accuracy in internal and external validation. The expected associations with CVD and all-cause mortality indicate excellent face validity. This algorithm can be used widely for other studies that have utilised wrist-worn accelerometers and an open-source pipeline is provided to facilitate implementation.Funding Acknowledgements This research has been conducted using the UK Biobank Resource under Application Number 59070. This research was funded in whole or in part by the Wellcome Trust [223100/Z/21/Z]. For the purpose of open access, the author has applied a CC-BY public copyright licence to any author accepted manuscript version arising from this submission. AD and SS are supported by the Wellcome Trust. AD and DM are supported by Swiss Re, while AS is an employee of Swiss Re. AD, SC, RW, SS, and SK are supported by HDR UK, an initiative funded by UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations. AD, DB, GM, and SC are supported by NovoNordisk. AD is supported by the BHF Centre of Research Excellence (grant number RE/18/3/34214). SS is supported by the University of Oxford Clarendon Fund. DB is further supported by the Medical Research Council (MRC) Population Health Research Unit. DC holds a personal academic fellowship from EPSRC. AA, AC and DC are supported by GlaxoSmithKline. SK is supported by Amgen and UCB BioPharma outside of the scope of this work. Computational aspects of this research were funded from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) with additional support from Health Data Research (HDR) UK and the Wellcome Trust Core Award [grant number 203141/Z/16/Z]. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.Competing Interest StatementMixed competing interests: Authors have completed an ICMJE Disclosure Form. This research has been conducted using the UK Biobank Resource under Application Number 59070. AD and SS are supported by the Wellcome Trust [223100/Z/21/Z]. AD and DM are supported by Swiss Re, while AS is an employee of Swiss Re. AD, SC, RW, SS, and SK are supported by HDR UK, an initiative funded by UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations. AD, DB, GM, and SC are supported by NovoNordisk. AD is supported by the BHF Centre of Research Excellence (grant number RE/18/3/34214). SS is supported by the University of Oxford Clarendon Fund. DB is further supported by the Medical Research Council (MRC) Population Health Research Unit. DC holds a personal academic fellowship from EPSRC.AA, AC and DC are supported by GlaxoSmithKline. SK is supported by Amgen and UCB BioPharma outside of the scope of this work. Computational aspects of this research were funded from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) with additional support from Health Data Research (HDR) UK and the Wellcome Trust Core Award [grant number 203141/Z/16/Z]. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.Funding StatementThis study was funded by Wellcome Trust [223100/Z/21/Z], Swiss Re, and Health Data Research UKAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethical approval for participant recruitment was obtained from the Central University Research Ethics Committee of the University of Oxford (Ref: R63137/RE001)I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe OxWalk dataset generated in this study is available for download and free for use through the Oxford University Research Archive (https://ora.ox.ac.uk/objects/uuid:19d3cb34-e2b3-4177-91b6-1bad0e0163e7). An open-source accelerometer processing tool integrating the hybrid machine learning step detection method derived in this study is available for use at https://github.com/OxWearables/stepcount. https://ora.ox.ac.uk/objects/uuid:19d3cb34-e2b3-4177-91b6-1bad0e0163e7 https://github.com/OxWearables/stepcount https://github.com/OxWearables/UKB_steps_mortality