RT Journal Article SR Electronic T1 Evaluating the use of social contact data to produce age-specific forecasts of SARS-CoV-2 incidence JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2022.12.02.22282935 DO 10.1101/2022.12.02.22282935 A1 Munday, James D A1 Abbott, Sam A1 Meakin, Sophie A1 Funk, Sebastian YR 2022 UL http://medrxiv.org/content/early/2022/12/03/2022.12.02.22282935.abstract AB Short-term forecasts can provide predictions of how an epidemic will change in the near future and form a central part of outbreak mitigation and control. Renewal-equation based models are increasingly popular. They infer key epidemiological parameters from historical epidemiological data and forecast future epidemic dynamics without requiring complex mechanistic assumptions. However, these models typically ignore interaction between age-groups, partly due to challenges in parameterising a time varying interaction matrix. Social contact data collected regularly by the CoMix survey during the COVID-19 epidemic in England, provide a means to inform interaction between age-groups in real-time.We developed an age-specific forecasting framework and applied it to two age-stratified time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and antibody prevalence survey; and, reported cases according to the UK national COVID-19 dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred a time-varying next generation matrix which we used to project infections and cases in the four weeks following each of 29 forecast dates between October 2021 and November 2022. We evaluated the forecasts using proper scoring rules and compared performance with three other models with alternative data and specifications alongside two naive baseline models.Overall, incorporating age-interaction improved forecasts of infections and the CoMix-data-informed model was the best performing model at time horizons between two and four weeks. However, this was not true when forecasting cases. We found that age-group-interaction was most important for predicting cases in children and older adults. The contact-data-informed models performed best during the winter months of 2020 - 2021, but performed comparatively poorly in other periods. We highlight challenges regarding the incorporation of contact data in forecasting and offer proposals as to how to extend and adapt our approach, which may lead to more successful forecasts in future.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was partly funded by an Office for National Statistics COVID-19 Infection Survey Analysis grant PU-20-0205(c): JDM. This work was partly funded by the Wellcome Trust 210758/Z/18/Z: JDM and SFAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study used ONLY openly available human data located at: Contact Matrices: https://doi.org/10.5281/zenodo.7351951 COVID-19 Cases: https://coronavirus.data.gov.uk COVID-19 infection survey: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/25november2022 I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesCase data is available on thu UK Covid-19 Dashboard https://coronavirus.data.gov.uk Infection and antibody prevalence data is available from the Covid-19 infection survey website https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/25november2022 and contact matrices are available from the CoMix online repository https://doi.org/10.5281/zenodo.7351951. Case data is available on thu UK Covid-19 Dashboard https://coronavirus.data.gov.uk Infection and antibody prevalence data is available from the Covid-19 infection survey website https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/25november2022 and contact matrices are available from the CoMix online repository https://doi.org/10.5281/zenodo.7351951.