RT Journal Article SR Electronic T1 Tailored Magnetic Resonance Fingerprinting JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2022.09.15.22279855 DO 10.1101/2022.09.15.22279855 A1 Poojar, Pavan A1 Qian, Enlin A1 Fung, Maggie A1 Quarterman, Patrick A1 Jambawalikar, Sachin R. A1 Lignelli, Angela A1 Geethanath, Sairam YR 2022 UL http://medrxiv.org/content/early/2022/09/27/2022.09.15.22279855.abstract AB Neuroimaging of certain pathologies requires both multi-parametric qualitative and quantitative imaging. The role of the quantitative MRI (qMRI) is well accepted but suffers from long acquisition times leading to patient discomfort, especially in geriatric and pediatric patients. Previous studies show that synthetic MRI can be used in order to reduce the scan time and provide qMRI as well as multi-contrast data. However, this approach suffers from artifacts such as partial volume and flow. In order to increase the scan efficiency (the number of contrasts and quantitative maps acquired per unit time), we designed, simulated, and demonstrated rapid, simultaneous, multi-contrast qualitative (T1 weighted, T1 fluid attenuated inversion recovery (FLAIR), T2 weighted, water, and fat), and quantitative imaging (T1 and T2 maps) through the approach of tailored MR fingerprinting (TMRF) to cover whole-brain in approximately four minutes.We performed TMRF on in vivo four healthy human brains and in vitro ISMRM/NIST phantom and compared with vendor supplied gold standard (GS) and MRF sequences. All scans were performed on a 3T GE Premier system and images were reconstructed offline using MATLAB. The reconstructed qualitative images were then subjected to custom DL denoising and gradient anisotropic diffusion denoising. The quantitative tissue parametric maps were reconstructed using a dense neural network to gain computational speed compared to dictionary matching. The grey matter and white matter tissues in qualitative and quantitative data for the in vivo datasets were segmented semi-automatically. The SNR and mean contrasts were plotted and compared across all three methods. The GS images show better SNR in all four subjects compared to MRF and TMRF (GS>TMRF>MRF). The T1 and T2 values of MRF are relatively overestimated as compared to GS and TMRF. The scan efficiency for TMRF is 1.72 min-1 which is higher compared to GS (0.32 min-1) and MRF (0.90 min-1).Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported, in part, by GE-Columbia research partnership grant and also performed at Zuckerman Mind Brain Behaviour Institute MRI Platform, a shared resource, and Columbia MR Research Center siteAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Columbia University in the City of New York, Institutional Review BoardsI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present study are available upon reasonable request to the authors